
PROTOCOL BASICS
Electronic message, point A to point B

Friday, February 25, 2011

SMTP OVERVIEW

SMTP is the client/server protocol used to ship electronic
mail messages, perhaps locally between processes, or more
commonly from one server to another, using the network.

SMTP is an Application Layer protocol, implemented in
plain text, having only one Transport Layer requirement: a
reliable and ordered data stream. TCP is most commonly
used.

The standard SMTP TCP port number is 25, though there is
also a special “submission” port, which is 587.

Friday, February 25, 2011

PRIMARY SMTP RFC’S

The original specification for SMTP was RFC 821, written in
1982, and pulling material from numerous earlier RFC’s
governing mail protocols.

In 2001, a rewrite and update for the SMTP protocol was
released as RFC 2821.

The latest SMTP standard is RFC 5321, written in 2008:

http://tools.ietf.org/html/rfc5321

Friday, February 25, 2011

http://www.faqs.org/rfcs/rfc5321.html
http://www.faqs.org/rfcs/rfc5321.html

BARE BONES SMTP

At minimum, for a client to send an email using SMTP, four
commands must be sent to the server in proper sequence:
EHLO, MAIL, RCPT, DATA.

There are, of course, many other commands, most of which
will be covered later in the course. For now, the focus is on
the basics, which is where most of the heavy lifting occurs
with SMTP.

Friday, February 25, 2011

A FEW NOTES

All lines must end in a carriage return, then a line feed,
noted as <CRLF>. All lines in the examples assume
this ending, but do not always show it. Occasionally,
<CRLF> will be used to indicate the end of a line explicitly,
in order to better illustrate a concept. !RFC 5321 §2.3.8

Commands are case insensitive.

Friday, February 25, 2011

http://tools.ietf.org/html/rfc5321
http://tools.ietf.org/html/rfc5321

EHLO

The EHLO command stands for “Extended Hello,” and is the

way a client identifies itself to a server. Originally, there was
just the “Hello” command, HELO, but it is now deprecated.

Extensions to SMTP (discussed later, and known as ESMTP),
use EHLO to identify what capabilities a mail server supports

beyond basic SMTP. The only argument needed is the client’s
fully qualified hostname. Syntax and Example:

EHLO hostname<CRLF>

EHLO me.com

Friday, February 25, 2011

MAIL

The MAIL command is used to specify the return address for
the forthcoming email message. Syntax and Example:

MAIL FROM: sender<CRLF>

MAIL FROM: <bob@me.com>

Friday, February 25, 2011

mailto:bob@me.com
mailto:bob@me.com

RCPT

The RCPT command is used to specify email addresses for
the recipient(s) of the forthcoming message. If there is more
than one recipient, the command is repeated. Syntax and
Sample:

RCPT TO: receiver<CRLF>

RCPT TO: <alice@you.com>

Friday, February 25, 2011

mailto:alice@you.com
mailto:alice@you.com

DATA

The DATA command marks the beginning of the message

content, and is terminated by a period on a line by itself:

<CRLF>.<CRLF>

Example:

DATA

Content of message....

.<CRLF>

Friday, February 25, 2011

QUIT

The QUIT command is the correct method of disconnecting
from the mailserver.

Once issued, the server will return a 221 response and
disconnect the network connection.

Any pending mail transactions will be aborted.

Friday, February 25, 2011

INEVITABLE
QUESTION:

If a period on an empty line terminates the DATA command,
can you send an email with a period on a line by itself?!

Yes, of course you can. To address that problem, a
technique known as “dot stuffing” is used.

Dot stuffing calls for the client to insert a period at the start
of any message line originally starting with a period. If the
server receives a line containing only a period, this is the end
of data. Otherwise, the server drops the prepended period
and continues as normal. !RFC 5321 §4.5.2

Friday, February 25, 2011

http://tools.ietf.org/html/rfc5321
http://tools.ietf.org/html/rfc5321

SO, ALL TOGETHER
NOW
EHLO me.com

MAIL FROM: <me@me.com>

RCPT TO: <you@you.com>

DATA

Blah blah blah here is the email blah blah

.<CRLF>

QUIT

Friday, February 25, 2011

mailto:me@me.com
mailto:me@me.com
mailto:you@you.com
mailto:you@you.com

THAT’S IT?

Yup. Well, mostly. As mentioned previously, there are more
commands and extensions that will be covered.

Also, server response codes are extremely important, so let’s
begin discussing them now!

Friday, February 25, 2011

SMTP REPLIES

SMTP replies consist of a three digit number, possibly followed
by a brief text message, normally all contained on one line,
though multiple lines are possible depending on the server
software and the command sent (notably, EHLO, EXPN and HELP

generally result in more than one line of response). Examples:

220 mail.example.com ESMTP

250 mail.example.com Hello me.com, pleased to
meet you

550 5.7.1 Access denied

Friday, February 25, 2011

SMTP REPLIES

Each digit of the code has special meaning

The first digit indicates the overall response: good, bad or
incomplete.

The second digit indicates the category of response, such as
syntactical, connection, information, etc.

The third digit provides additional detail about the category
referred to in the second digit.

Friday, February 25, 2011

FIRST DIGIT

2__: Positive completion

3__: Positive intermediate, need more information

4__: Temporary negative completion

5__: Permanent negative completion

Friday, February 25, 2011

SECOND DIGIT

0: Syntax errors

1: Informational responses

2: Connection responses

3: Unspecified

4: Unspecified

5: Mail system responses

Friday, February 25, 2011

THIRD DIGIT

The third digit provides additional meaning to the category given
by the second digit. Accepted values given in RFC. Examples:

500 - Syntax error, unrecognized command

501 - Syntax error, invalid arguments

502 - Command not implemented

503 - Bad command sequence

504 - Command parameter not implemented

Friday, February 25, 2011

TEXTUAL RESPONSE

The textual component of the response is generally meant for human
consumption, though there are a handful of responses which should
be parsed by the client: 220, 221, 251, 421, and 551.

For extra credit, note that if the reply text is longer than one line,
every response except the last will start with the same code, followed
immediately by a hyphen. The last line will not contain the hyphen:

250-First line

250-Second line

250 Last line

Friday, February 25, 2011

RESPONSES

The official list of response codes and suggested texts is
available in the RFC: !RFC 5321 §4.2.3

Additional response codes are possible for future use, and
research into the server software will be necessary to
understand their meaning.

Note that many servers implement an additional code to help
indicate to clients what is going on - this is specific to the server
software, and not an officially standardized component of
SMTP. This value will be sent with the textual component of
the response.

Friday, February 25, 2011

http://tools.ietf.org/html/rfc5321
http://tools.ietf.org/html/rfc5321

$ telnet server1.example.com 25
Trying 192.168.1.100...
Connected to 192.168.1.100.
Escape character is '^]'.
220 server1.example.com ESMTP Postfix
ehlo me.com
250-server1.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-ENHANCEDSTATUSCODES
250-8BITMIME
250 DSN
mail from: <bob@me.com>
250 2.1.0 Ok
rcpt to: alice@server1.example.com
250 2.1.5 Ok
data
354 End data with <CR><LF>.<CR><LF>
This is a test message!
.
250 2.0.0 Ok: queued as BF4B329EC7
quit
221 2.0.0 Bye
Connection closed by foreign host.

Friday, February 25, 2011

mailto:bob@me.com
mailto:bob@me.com
mailto:alice@server1.example.com
mailto:alice@server1.example.com

1) Spend a few minutes browsing through the RFC for SMTP. Focus on
sections 4.1 and 4.2.

2) Using telnet and the four basic commands learned previously, send a
simple test email message to stationX@server1.example.com where
X represents your station number.

3) Verify receipt of the message by setting up Thunderbird:

Incoming & Outgoing Mail Server: server1.example.com

Incoming Mail Server Type: IMAP

Username/Password: stationX

LAB 1

Friday, February 25, 2011

mailto:stationX@server1.example.com
mailto:stationX@server1.example.com

BUT THAT’S NOT HOW
I SEND EMAILS...

Indeed. We rarely use telnet to send emails. (Except to
impress at the parties).

Normally, a piece of software called a Mail User Agent
(MUA) is used to manage all email interfacing - both
sending and receiving. Thunderbird is an MUA. So are
Outlook and Apple Mail.

An MUA handles the details of interfacing with the user and
with mail servers to provide an intuitive, reliable tool for
sending and receiving emails.

Friday, February 25, 2011

LOGGING SMTP
CONVERSATIONS

Thunderbird - From command prompt:

export NSPR_LOG_MODULES=SMTP:4

export NSPR_LOG_FILE=~/Desktop/smtp.log

/Applications/Thunderbird.app/Contents/
MacOS/thunderbird-bin (All on one line)

Friday, February 25, 2011

LOGGING SMTP
CONVERSATIONS

Outlook - Overly involved. See:

http://support.microsoft.com/kb/300479

Not complex to set up, just quite a few steps to follow, and
it’s different for each version of Outlook.

Also, the log files will be in different locations based on
version of Outlook.

Google will always be your friend for this. :)

Friday, February 25, 2011

http://support.microsoft.com/kb/300479
http://support.microsoft.com/kb/300479

LOGGING SMTP
CONVERSATIONS

Apple Mail - Also overly involved. See google for tips.

Basically, double-click /Library/Scripts/Mail
Scripts/Turn on Logging.scpt

Run the newly opened apple script, and select “Sending”

Watch the console log using the Console utility

Friday, February 25, 2011

1) Set up SMTP conversation logging in Thunderbird and
send a second test email to
stationX@server1.example.com. Verify receipt.

2) Analyze the SMTP conversation and note a few of the
differences from the manual steps used in Lab 1. What do
you suppose is going on?

3) Dig into the RFC a bit more. Sections 2.1, 3.1, 3.2, 3.3
should be of particular interest.

LAB 2

Friday, February 25, 2011

mailto:stationX@server1.example.com
mailto:stationX@server1.example.com

SERVER SIDE LOGS

Server side logs are naturally dependent on the software being
run for the SMTP server.

On *nix systems, this is commonly Sendmail, Postfix or Qmail.

On *doze systems, this is commonly Exchange.

The location, format and level of information available in the
logs will be dependent upon software and configuration, but
let’s take a look at the logs on server1.example.com, which is
running Postfix.

Friday, February 25, 2011

slideshow.end();

Friday, February 25, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

HEADER BASICS
Subject: Are we having fun yet?

Friday, February 25, 2011

EMAIL CONSTRUCTION

Up until this point, we have been considering the DATA
command to encompass the body of the email message.

This isn’t entirely accurate.

Email messages are actually composed of two parts.

The Headers

The Body

Friday, February 25, 2011

EMAIL HEADERS

Email headers are actually a very important aspect of an
email message.

Email headers describe who sent a message, the subject,
who the message was destined for, delivery information and
more.

Friday, February 25, 2011

MORE RFC’S!

Enjoyed RFC 5321 enough?

Well, RFC 5322 dictates the format for email messages

This is another RFC you need to be familiar with.

http://tools.ietf.org/html/rfc5322

Friday, February 25, 2011

http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322

OVERVIEW

The main parts of RFC 5322 you need to know are pretty
simple:

Email messages start with the headers, which are lines that
start with a header name, followed by a colon, and then the
value. One or more headers can be included in a message.

A blank line terminates the header section and starts the
body.

The body is terminated by <CRLF>.<CRLF>

Friday, February 25, 2011

COMMON HEADERS

Some of the common headers include:

Subject, To, From, Date, Reply-To, CC, BCC

Technically, the only required headers are:

Date, From

!RFC 5322 §3.6

Friday, February 25, 2011

http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322

$ telnet server1.example.com 25
Trying 192.168.1.100...
Connected to 192.168.1.100.
Escape character is '^]'.
220 server1.example.com ESMTP Postfix
helo me.com
250 server1.example.com
mail from: <bob@me.com>
250 2.1.0 Ok
rcpt to: alice@server1.example.com
250 2.1.5 Ok
data
354 End data with <CR><LF>.<CR><LF>
From: <bob@me.com>
Date: Wed, 22 Dec 2010 22:31:21 -0600 (CST)
Subject: Test Message #2
Reply-To: <bob@me.com>

This is another test message! A properly formatted one!
.
250 2.0.0 Ok: queued as BF4B329EC7
quit
221 2.0.0 Bye
Connection closed by foreign host.

Friday, February 25, 2011

mailto:bob@me.com
mailto:bob@me.com
mailto:alice@server1.example.com
mailto:alice@server1.example.com

1) Spend a few minutes browsing through the RFC for the Internet
Message Format. Focus on sections 2.1, 2.2, 2.3, and 3.6.

2) Use telnet to send a simple test email message to
stationX@server1.example.com where X represents your station
number. Include at least the following headers: Subject, To, From,
Date, Reply-To.

3) Verify receipt of the message in Thunderbird. Check that Thunderbird
properly understood the message and headers. Does the Subject
appear correctly? What about the date?

4) Compare the message you just sent with ones sent in previous labs.
Are there headers on the old emails? Where did they come from?

LAB 1

Friday, February 25, 2011

mailto:stationX@server1.example.com
mailto:stationX@server1.example.com

TRACE FIELDS

The trace fields are used just for that - tracing message
paths. This is extremely useful debugging
information!

The most important trace field is the Received header.

Messages should normally contain one or more Received
header lines, tracing a path from the sender to the receiver.

!RFC 5321 §4.4

Friday, February 25, 2011

http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322

RECEIVED LINES

The RFC states that each time an SMTP server accepts a
message, either for relaying (discussed later) or local delivery,
it MUST prepend a Received line to the existing headers.

This allows for a very convenient method of tracing an email
through various servers on it’s way to delivery!

Note: the format of the text in the received line is only loosely
guided by the RFC - in the wild you will see many variations,
and occasionally find Received lines being used internally by
mail providers for private debugging (gmail, yahoo, etc)

Friday, February 25, 2011

Return-Path: <deborah.carter@rackspace.com>
X-Original-To: nathan@edgecloud.com
Delivered-To: xxxxxxxxx@homiemail-mx9.g.dreamhost.com
Received: from mx1.dfw1.rackspace.com (mx1.dfw1.rackspace.com [72.3.128.180])
 (using TLSv1 with cipher DHE-RSA-AES256-SHA (256/256 bits))
 (No client certificate requested)
 by homiemail-mx9.g.dreamhost.com (Postfix) with ESMTPS id 8F782285AD5
 for <nathan@edgecloud.com>; Tue, 21 Dec 2010 07:59:14 -0800 (PST)
Received: from SAT2EXH02.RACKSPACE.CORP ([10.3.22.154])
 by mx1.dfw1.rackspace.com (8.14.2/8.14.2) with ESMTP id oBLFx6LE014292;
 Tue, 21 Dec 2010 09:59:11 -0600
 (envelope-from deborah.carter@rackspace.com)
Received: from SAT2EXD04.RACKSPACE.CORP ([169.254.4.106]) by
 SAT2EXH02.RACKSPACE.CORP ([10.3.22.154]) with mapi id 14.01.0255.000; Tue, 21
 Dec 2010 09:59:09 -0600
From: Deborah Carter <deborah.carter@rackspace.com>
To: "'Nathan Isburgh'" <nathan@edgecloud.com>
CC: Duane LaBom <duane.labom@rackspace.com>
Subject: Happy Holidays!
Thread-Topic: Happy Holidays!
Thread-Index: AcuhJ/9WF23yaKPhT5+ghDadIZnyTw==
Date: Tue, 21 Dec 2010 15:59:09 +0000
Message-ID: <0BA978672ACDB141B758F523E421AFE40B669C@SAT2EXD04.RACKSPACE.CORP>
Accept-Language: en-US
Content-Language: en-US
X-MS-Has-Attach: yes
X-MS-TNEF-Correlator:
x-originating-ip: [10.3.22.134]
Content-Type: multipart/related;
 boundary="_004_0BA978672ACDB141B758F523E421AFE40B669CSAT2EXD04RACKSPAC_";
 type="multipart/alternative"
MIME-Version: 1.0

Friday, February 25, 2011

mailto:deborah.carter@rackspace.com
mailto:deborah.carter@rackspace.com
mailto:nathan@edgecloud.com
mailto:nathan@edgecloud.com
mailto:x10010982@homiemail-mx9.g.dreamhost.com
mailto:x10010982@homiemail-mx9.g.dreamhost.com
mailto:nathan@edgecloud.com
mailto:nathan@edgecloud.com
mailto:deborah.carter@rackspace.com
mailto:deborah.carter@rackspace.com
mailto:deborah.carter@rackspace.com
mailto:deborah.carter@rackspace.com
mailto:nathan@edgecloud.com
mailto:nathan@edgecloud.com
mailto:duane.labom@rackspace.com
mailto:duane.labom@rackspace.com
mailto:0BA978672ACDB141B758F523E421AFE40B669C@SAT2EXD04.RACKSPACE.CORP
mailto:0BA978672ACDB141B758F523E421AFE40B669C@SAT2EXD04.RACKSPACE.CORP

1) Return to RFC 5321 and spend some time on section 4.4.

2) Reexamine the headers on all of the test emails you have
sent. Can you understand the Received lines?

3) Look through some real email messages - work or personal.
Check out the headers and see if you can follow the
Received lines from originating server to final destination.
Note how different mail systems use the Received lines.

4) Consider: How might you use this information to find
spammer IP addresses?

LAB 2

Friday, February 25, 2011

slideshow.end();

Friday, February 25, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

SMTP, DNS AND SPAM
Flippity Flop... It’s done! SPAM-burger on a bun!

Friday, February 25, 2011

“REAL” EMAILS

So how does a “real” email get from a sending user’s MUA to
the destination mail server (which eventually will get to the
receiver’s MUA)?

For example, when someone emails
instructor@edgecloud.com, what happens?

Friday, February 25, 2011

STEP ONE

First off, the user composes their email, adding a subject,
recipient, body, etc.

When the user presses Send, the MUA takes all of the
information presented and wraps it up into a mail object,
exactly like we discovered earlier. To and From headers, the
Subject header and more, are all pieced together with the
body of the email message.

Now the MUA needs to send the mail object out...

Friday, February 25, 2011

STEP TWO

Remember setting up the “Outgoing mailserver” in
Thunderbird? This is known as your relay mailserver. Relaying
will be discussed in more detail later.

For right now, consider the relay mailserver as your email
shipping center. Your MUA needs this relay mailserver to know
where to send outgoing email messages.

Note: With Outlook and Exchange (shudder), the process is
slightly different, because Microsoft loves to reinvent the wheel
constantly, and they use a proprietary exchange format between
clients and the Exchange server. Yay.

Friday, February 25, 2011

STEP TWO

The MUA connects to the relay server and uses SMTP to transfer
the mail message.

The relay server is now responsible for getting the email delivered
to the correct server.

There are several reasons why this is done:

Reliability - temporary failures on receiving server

Limited Spam mitigation

Performance - parallel deliveries

Friday, February 25, 2011

STEP THREE

Now the relay server has this email to deliver, and has to
figure out where to send it..

DNS to the rescue!

There are records in DNS known as MX records. These
records detail what servers are responsible for email for a
given domain.

Friday, February 25, 2011

MX RECORDS

Mail Exchanger: Defines hosts responsible for incoming
email for the named zones.

zone IN MX preference mailhandler

Example:

edgecloud.com. IN MX 10 mail1.edgecloud.com.

Friday, February 25, 2011

LOOKING UP MX
RECORDS

dig domain mx

nslookup

set query=mx

domain

Friday, February 25, 2011

STEP THREE

Using the MX records, the relay server now knows what
machine to connect and send SMTP commands to.

But what’s this about a preference?

Friday, February 25, 2011

MX RECORDS

MX records allow for enhanced mail routing functionality.

When an email is shipped out, the server first canonicalizes the delivery
address. So, for example, if test.edgecloud.com is an alias (CNAME)
for edgecloud.com, then an email to instructor@test.edgecloud.com is
rewritten to instructor@edgecloud.com.

Then the server looks up the MX records for edgecloud.com, choosing
the record with the lowest preference and attempting delivery there.
If the server can not be contact, the next lowest preference server is
attempted.

This allows for backup email servers!

Friday, February 25, 2011

mailto:instructor@edgecloud.com
mailto:instructor@edgecloud.com

BACKUP EMAIL
SERVERS

But, how does the backup server handle forwarding on the
message to the primary?

Preference values to the rescue again!

The backup server will compare it’s own MX preference
value with the list, and discard all records at or below it’s
own level, thereby eliminating the chance for mail delivery
loops (assuming everything is set up correctly)

Quite elegant, no?

Friday, February 25, 2011

BACKUP EMAIL
SERVERS

Side note: MX records should always point to canonical
hostnames, in other words, names that have an A record
associated with them.

Pointing an MX to a CNAME is possible, but heavily
frowned upon, and it will probably lead to some servers not
talking to that mail server. Definitely something to double
check when troubleshooting email systems.

Friday, February 25, 2011

ADDITIONAL DNS

Remember PTR records? Used for mapping IP address
domains back to their canonical hostname?

The PTR and A records for all mail servers should match.
Meaning, if mail1.edgecloud.com is an MX entry:

mail1.edgecloud.com -> 10.20.30.40

40.30.20.10.in-addr.arpa -> mail1.edgecloud.com

This is a simple fact that many mailservers automatically
check to try and reduce spam and spoofed emails.

Friday, February 25, 2011

1) Using dig and nslookup, determine the mail servers for
emails addressed to users at rackspace.com,
edgecloud.com and gmail.com.

2) Try sending a manual email to one or more of the mail
servers discovered in question 1. Does it work?

3) Verify the forward and reverse DNS lookups for the mail
servers found in question 1.

LAB 1

Friday, February 25, 2011

SPAM

Spam: the scourge of email

In the old days, spam wasn’t considered or even imagined.
The old, solid protocol, SMTP, wasn’t designed with heavy
security or authentication in mind, but simplicity and
reliability.

Naturally, it didn’t take long for the abuse to start, and the
internet community has been fighting it ever since.

What follows is a discussion of some of the more popular and
effective spam prevention techniques in use today.

Friday, February 25, 2011

SENDER POLICY
FRAMEWORK
Otherwise known as SPF.

SPF is actually a very simple idea, and quite effective for the servers
that implement it.

Basically, SPF utilizes a DNS TXT record to store a list of the servers
which should be the only ones sending messages from a domain.

Side note: Sender Id is similar, but not the same. SPF verifies the
envelope sender (MAIL FROM:), whereas Sender ID verifies the
one or more senders listed in the headers. Sender ID is often
confused with SPF because it’s record syntax was derived from SPF,
and identifies itself with spf2.0 TXT records. Bad Microsoft. Bad!

Friday, February 25, 2011

SPF

When a mailserver is receiving a mail message, it simply
looks up the SPF information for the incoming email
domain, and if the connected server isn’t listed, the email is
not accepted.

There are, of course, a few details about SPF worth
mentioning..

Friday, February 25, 2011

SPFV1

RFC 4408 is the official specification for SPFv1.

http://tools.ietf.org/html/rfc4408

Heaps of useful information here.

Friday, February 25, 2011

http://tools.ietf.org/html/rfc4408
http://tools.ietf.org/html/rfc4408

SPFV1 DNS RECORDS

The DNS records contain the configuration guiding SPF. An
example will serve best:

edgecloud.com. IN TXT

“v=spf1 +a:mail1.edgecloud.com -all”

This entry says that emails coming from edgecloud.com
must originate from one of the IP addresses associated with
the A records for mail1.edgecloud.com. All other originators
are impostors.

Friday, February 25, 2011

SPFV1 DNS RECORDS

You will notice the use of TXT records. This is because SPF
is still an experimental protocol. If it gets adopted, it will
receive it’s own DNS record type, SPF. For now, since TXT
records are being used, the data has to start with “v=spf1” so
mailservers can distinguish SPF records from other TXT
records.

The rest of the record is a list of allowed and denied servers.
Some common tags you will see in an SPF record:

Friday, February 25, 2011

SPFV1 TAGS

The following is a list of qualifiers for servers. Prepended to
the front of a server identity, these tags control SPF
behavior:

+ Pass (default)

- Fail

~ Soft fail

? Neutral

Friday, February 25, 2011

SPFV1 SERVER
IDENTITIES

Identifying servers with SPF configuration is quite flexible.
Some common mechanisms and examples:

a:domain_name a:mail1.edgecloud.com

mx:domain_name mx:edgecloud.com

ip4:ipv4_address ip4:10.20.30.0/24

Friday, February 25, 2011

SPFV1 EXTRA

SPF even supports the ability to include spf configs from
another domain, or even redirect all spf configuration details
to another domain:

include:domain_name include:rackspace.com

redirect:domain_name redirect:yahoo.com

Friday, February 25, 2011

SPFV1 LINKS

SPF is extremely flexible and there are some gotchas to
setting up SPF. Here are a few handy links to get things
rolling:

http://www.openspf.org/Introduction

http://www.openspf.org/SPF_Record_Syntax

http://tools.ietf.org/html/rfc4408

Friday, February 25, 2011

http://www.openspf.org/Introduction
http://www.openspf.org/Introduction
http://www.openspf.org/SPF_Record_Syntax
http://www.openspf.org/SPF_Record_Syntax
http://tools.ietf.org/html/rfc4408
http://tools.ietf.org/html/rfc4408

1) Browse the links provided earlier, covering more details of
SPF. Can you see where SPF could be really effective? What
is the number one drawback to SPF?

2) Look up the SPF configuration for state.tx.us. Explain the
meaning of the rules in your own words. Refer to
documentation if necessary.

3) Look through some personal or work emails. Examine the
headers. Do you see Received-SPF? What do you think it
means? Find one with a designated match and verify against
DNS.

LAB 2

Friday, February 25, 2011

DOMAIN KEYS

Domain Keys is a deprecated protocol, meant to reliably
authenticate an email’s identity using its domain and
information in DNS. Domain Keys was merged with
Identified Mail to create DKIM, which is the standards
replacement for Domain Keys.

There is a Historic category RFC describing the Domain
Keys protocol.

http://tools.ietf.org/html/rfc4870

Friday, February 25, 2011

http://www.openspf.org/Introduction
http://www.openspf.org/Introduction

DOMAIN KEYS

Some sites still run DK (Yahoo most notably, seeing as how
they invented it), but most have converted, or are
converting over to DKIM.

DKIM is fully backwards compatible with DK, including the
DNS configuration records (covered in next section)

See the following link for details comparing DK and DKIM:

http://www.dkim.org/info/dkim-faq.html#related

Friday, February 25, 2011

DK/DKIM HIGH LEVEL

These two protocols transparently sign an email message as it is
leaving a server. If Rackspace chose to implement DKIM, the RS
Mailservers would sign and prepend the DKIM-Signature header
to all outgoing emails. This doesn’t help anything by itself!

To complete the process, receiving mailservers have to see the
signature header, look up the public keys in DNS, verify the
signatures, and let the receiving user know that all was well (or
not!) with headers. Which the user should look for, btw! Without
this part, DKIM [and DK] is impotent!

Friday, February 25, 2011

DK HEADERS

The DK header is “DomainKey-Signature.” Example:

DomainKey-Signature: a=rsa-sha1; c=nofws;
 d=gmail.com; s=gamma;
 h=mime-version:date:message-id:subject:from:to:content-type;
 b=CeZhVULWEQryIb+3k2wU5MNTuo62ooPfVTyqZXeYTlOxt65Xs2hsnl8/4HHyWb61b7
 pEm3RcWT+czwDsAU8ijH7j0rXnJrswFMkSeIs0E857UuQXVi1fCz7IToeQaQi4WhNmB4
 3ra/2hh5VpdD7j7DnDCmZ9kSv/+wBIBkD3RJQ=

!RFC 4870 §3.3

To look up the public key, perform a TXT query on:

<s>._domainkey.<d>

gamma._domainkey.gmail.com

Friday, February 25, 2011

http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322

dig gamma._domainkey.gmail.com txt

; <<>> DiG 9.6.0-APPLE-P2 <<>> gamma._domainkey.gmail.com txt
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57517
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0,
ADDITIONAL: 0

;; QUESTION SECTION:
;gamma._domainkey.gmail.com. IN TXT

;; ANSWER SECTION:
gamma._domainkey.gmail.com. 300! IN TXT "k=rsa\; t=y\;
p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDIhyR3oItOy22ZOaBrIVe9m/
iME3RqOJeasANSpg2YTHTYV
+Xtp4xwf5gTjCmHQEMOs0qYu0FYiNQPQogJ2t0Mfx9zNu06rfRBDjiIU9tpx2T
+NGlWZ8qhbiLo5By8apJavLyqTLavyPSrvsx0B3YzC63T4Age2CDqZYA
+OwSMWQIDAQAB"

;; Query time: 65 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Fri Dec 24 14:19:38 2010
;; MSG SIZE rcvd: 287

Friday, February 25, 2011

DK VERIFICATION

Verifying DK signatures manually is an exceptionally involved process.
Fortunately, there’s a better option:

Look for the “Authentication-Results” header. !RFC 5451

Most mail systems use this header to list results for SPF, DK and DKIM
authentication tests. Example:

Authentication-Results: mr.google.com; spf=pass
(google.com: domain of xxxxxxxxx@gmail.com designates
10.216.13.194 as permitted sender)
smtp.mail=xxxxxxxx@gmail.com; dkim=pass
header.i=xxxxxxxx@gmail.com

Friday, February 25, 2011

http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322

DKIM

Domain Keys Identified Mail. The standards successor to DK, and
actually a much improved protocol.

http://tools.ietf.org/html/rfc4871

DKIM closely resembles DK in it’s operation and configuration -
there are minor differences which serve to improve the
effectiveness of the protocol. A couple of important changes:

The DKIM signature header is included in the signing process to
prevent tampering

DKIM can sign the body of the message

Friday, February 25, 2011

DKIM HEADERS

The DKIM header is “DKIM-Signature.” Example:

DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=yahoo.com; s=s1024; t=1293157230;
bh=iKTTWPnEnpqSGt2IXyu5juE5NZRvwAFda4KBcNIY+ks=; h=Message-ID:X-YMail-OSG:Received:X-
Mailer:Date:From:Subject:To:MIME-Version:Content-Type; b=jRUlKpqN2IQ6SvQucDK2guUcFbY3dM/
ufvz/mZJIKT4TjJW8F+mHaA
+51HVfwDNfSUbRHGcKYVhdaqnkhNH1tJpazMXA45OWKX4iGV4ylc1uJ8nzYRanDzWNk2+TSR1ZEER1qoqNtzhHz9fSC
sWO+sFPcSCU8l+KWEhmBYaN91A=

!RFC 4871 §3.5

To look up the public key, perform a TXT query on:

<s>._domainkey.<d>

s1024._domainkey.yahoo.com

Friday, February 25, 2011

http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322

dig s1024._domainkey.yahoo.com txt

; <<>> DiG 9.6.0-APPLE-P2 <<>> s1024._domainkey.yahoo.com txt
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38271
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0,
ADDITIONAL: 0

;; QUESTION SECTION:
;s1024._domainkey.yahoo.com. IN TXT

;; ANSWER SECTION:
s1024._domainkey.yahoo.com. 86400 IN TXT "k=rsa\; t=y\;
p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDrEee0Ri4Juz+QfiWYui/
E9UGSXau/2P8LjnTD8V4Unn+2FAZVGE3kL23bzeoULYv4PeleB3gfm"
"JiDJOKU3Ns5L4KJAUUHjFwDebt0NP+sBK0VKeTATL2Yr/S3bT/xhy
+1xtj4RkdV7fVxTn56Lb4udUnwuxK4V5b5PdOKj/+XcwIDAQAB\; n=A 1024
bit key\;"

;; Query time: 33 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Fri Dec 24 14:42:01 2010
;; MSG SIZE rcvd: 307

Friday, February 25, 2011

DKIM VERIFICATION

Verifying DKIM signatures manually is just as much a PITA as
DK.

Again, just look for the “Authentication-Results” header.
!RFC 5451

Authentication-Results: mr.google.com; spf=pass
(google.com: domain of xxxxxxxxx@gmail.com
designates 10.216.13.194 as permitted sender)
smtp.mail=xxxxxxxx@gmail.com; dkim=pass
header.i=xxxxxxxx@gmail.com

Friday, February 25, 2011

http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322

1) Browse through the various RFC’s and websites
documenting DK and DKIM.

2) Look through some personal or work emails. Examine the
headers. Do you see any DK or DKIM signature headers?
How about Authentication-Results headers? Is there
always going to be an Auth Results header? Why or Why
not?

3) Manually look up the public keys associated with 3 of the
signed emails in your inbox.

LAB 3

Friday, February 25, 2011

EMAIL BLACKLISTS

An email blacklist is a collection of IP addresses for servers known
to send spam email.

Blacklists are used by some mailservers to try and combat spam,
by either rejecting entirely any message a blacklisted server
attempts to send, or by bumping up a “spam score” on the
messages received from the blacklisted server.

Most blacklists are stored in the DNS database.

http://en.wikipedia.org/wiki/Comparison_of_DNS_blacklists

Friday, February 25, 2011

POPULAR BLACKLISTS

SORBS - Spam and Open Relay Blocking System

http://www.sorbs.net/

Spamhaus

http://www.spamhaus.org/

SpamCop

http://spamcop.net/

RFC-Ignorant

http://rfc-ignorant.org/

Friday, February 25, 2011

CHECKING
BLACKLISTS

Checking for listing in a black list can be done in one of two ways:

Web based lookup tool - either on the specific blacklist website,
or using a multi-lookup tool like:

http://multirbl.valli.org/

DNS

Friday, February 25, 2011

CHECKING
BLACKLISTS

Checking a website is simple. But checking DNS is slightly more
involved. Following is a description for most blacklists:

First, invert the octets from the IP address:

172.172.92.137 -> 137.92.172.173

Then, append the domain name for the spam list:

137.92.172.173.zen.spamhaus.org

Then, do an A record lookup. If it exists, the IP is listed.

Friday, February 25, 2011

GREYLISTS

Greylists are used to fight spam by temporarily deferring the first
email from an unknown sender.

The idea is that most spam engines will not bother retrying a
temporary deferral - they will just move on to the next victim.

Yahoo is one of the most notable employers of a slight variation on
greylisting. Yahoo, being such an enormous email provider,
maintains internal blacklists, whitelists and more. When a
particular sender starts looking suspicious, Yahoo will start
temporarily deferring their emails.

Friday, February 25, 2011

TAR PITS

Tarpitting - A clever idea used to slow down spammer sending
processes. There are many implementations, but the basic idea is
to greatly slow down the SMTP sequence, particularly if a host is
known to be a spammer. Other common implementations include
a mechanism that tracks, per sender, the number of emails sent
per unit time. As the rate increases, the SMTP server slows down.

Friday, February 25, 2011

OTHER SPAM ISSUES

Botnets - A Botnet is a collection of compromised servers being
controlled by a single entity (or person), generally to make money, do
harm, etc. A spamming botnet is an obvious way to make money and
get around many of the spam prevention techniques.

Open Relay - An open relay is a mailserver that accepts email from
anywhere, destined to anywhere. This is not how a mailserver should
work - either it accepts email for anywhere, from only certain hosts
(ISP mailserver for customers), or it accepts email from anywhere,
destined to particular mailboxes (MX server). Open relays allow
spammers to funnel messages and bypass many of the spam
prevention techniques, and therefore open relays often get blacklisted.

Friday, February 25, 2011

OTHER SPAM ISSUES

Smart Host - A smart host is a relay mailserver which is
configured to accept mail messages and forward them on to
another relay mailserver for additional processing and delivery.
Smart hosts do not perform MX lookups or any other delivery
processing, they merely pass the message along to another mail
server for handling. Since smart hosts are in the same thread as
open relays, they often have message acceptance requirements to
limit abuse (host based access controls, authentication, etc).

Friday, February 25, 2011

EMAIL PROVIDERS
AND SPAM

Most of the major email providers (yahoo, gmail, hotmail, etc)
employ a variety of spam prevention techniques.

Blacklists, greylists, whitelists - both internal and external

Tarpitting

Content analysis using keyword and bayesian filters

Advanced traffic analysis

Dedicated spam prevention departments

Friday, February 25, 2011

1) Look up 173.172.92.137 in at least 3 different
blacklists. Perform lookups via web tools and DNS
directly.

2) Browse the Wikipedia article on Anti-spam techniques:

http://en.wikipedia.org/wiki/Anti-spam_techniques

LAB 4

Friday, February 25, 2011

slideshow.end();

Friday, February 25, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

ADVANCED PROTOCOL
SMTP AUTH, encryption and other assorted goodies

Friday, February 25, 2011

ADDITIONAL SMTP
COMMANDS

The rest of the SMTP commands:

RSET - Reset current mail transaction - discard all data

VRFY - Verify the given user or mailbox is valid*

EXPN - Expand the given user or mailbox mailing list into the

list of recipients*

HELP - Request usage help from the server*

NOOP - No operation - basically a keep-alive

* Often disabled or not implemented

Friday, February 25, 2011

“REMOTE” SMTP
SERVICE

Recall from the previous lecture the discussion on open relays.

An open relay is definitely a Bad Thing, but sometimes email
service needs to be provided to clients that can’t be identified
solely by inbound IP address. Consider traveling employees,
hosting customers, etc. How can email service be offered without
creating an open relay?

SMTP AUTH

Friday, February 25, 2011

SMTP AUTH

SMTP Authentication is an SMTP protocol extension designed to
allow for authenticated SMTP sessions. Using an authentication
process allows a mailserver to identify a client and grant full email
relaying privilege to that session. More RFC’s!

RFC 4954 describes SMTP AUTH:

http://tools.ietf.org/html/rfc4954

SASL - Simple Authentication and Security Layer

http://tools.ietf.org/html/rfc4422

Friday, February 25, 2011

SMTP AUTH

The SMTP Auth RFC describes the generic process by which
clients can authenticate themselves to the server, namely by using
SASL mechanisms. It does not describe the details of the
authentication process itself. This RFC calls for the AUTH keyword
in the EHLO response.

The SASL RFC describes a very generic authentication procedure
which can be used by many different network services to handle
authentication. This RFC also does not describe the details of
specific authentication processes itself. =)

Friday, February 25, 2011

SMTP AUTH

Between these two RFC’s, mailservers can now advertise their
authentication support via the EHLO extension list response:

250-AUTH PLAIN LOGIN

As a side note, you will often see an “AUTH” line as well as an “AUTH=”
line in the EHLO response. This is for backwards compatibility with
some very old mail clients which did not correctly implement the RFC
for SMTP AUTH. See:

http://www.postfix.org/postconf.5.html#broken_sasl_auth_clients

Friday, February 25, 2011

AUTH PLAIN

RFC 4616 is the first SASL authentication process we will discuss:

http://tools.ietf.org/html/rfc4616

RFC 4616 describes the PLAIN SASL authentication mechanism,
more commonly known as “AUTH PLAIN”.

If the EHLO response line for “AUTH” includes the word “PLAIN”,
then the AUTH PLAIN mechanism is supported by that server.

Friday, February 25, 2011

BASE 64 ENCODING

Before we can discuss AUTH PLAIN, we need to introduce Base64
encoding

Base64 encoding is a method of translating arbitrary data into
printable characters, usually due to legacy constraints in a system
requiring US ASCII characters only.

The Base64 RFC:

http://tools.ietf.org/html/rfc4648

Friday, February 25, 2011

BASE 64 ENCODING

Base64 encoding can be done in several ways. Perl:

perl -MMIME::Base64 -e 'print encode_base64("Encode me")'

Make sure to escape out @ and $ symbols in string. See
Example.

Websites: google for base64 encoder or similar

By hand...

Tools: consult a google

Friday, February 25, 2011

AUTH PLAIN

Now that we can encode values with Base64, we can finish our
discussion of AUTH PLAIN.

To authenticate using AUTH PLAIN:

AUTH PLAIN <credentials>

Where <credentials> is a Base64 encoded string of the form:

<NULL>username<NULL>password

Friday, February 25, 2011

$ perl -MMIME::Base64 -e 'print encode_base64("\000user
\000password")'
AHVzZXIAcGFzc3dvcmQ=
$ telnet mail.example.com 25
Trying 10.20.30.40...
Connected to mail.example.com.
Escape character is '^]'.
220 mail.example.com ESMTP
ehlo test
250-mail.example.com
250-PIPELINING
250-SIZE 40960000
250-ETRN
250-STARTTLS
250-AUTH PLAIN LOGIN
250-AUTH=PLAIN LOGIN
250-ENHANCEDSTATUSCODES
250 8BITMIME
auth plain AHVzZXIAcGFzc3dvcmQ=
235 2.7.0 Authentication successful
quit
221 2.0.0 Bye
Connection closed by foreign host.

Friday, February 25, 2011

AUTH LOGIN

Now that we have covered one of the authentication mechanisms,
and learned about Base64, the other authentication mechanisms
will follow easily.

AUTH LOGIN is similar to AUTH PLAIN, except that the
username and password are supplied (Base64 encoded) in
individual commands.

An example will best demonstrate...

Friday, February 25, 2011

$ perl -MMIME::Base64 -e 'print encode_base64("user")'
dXNlcg==
$ perl -MMIME::Base64 -e 'print encode_base64("password")'
cGFzc3dvcmQ=
$ telnet mail.example.com 25
Trying 10.20.30.40...
Connected to mail.example.com.
Escape character is '^]'.
220 mail.example.com ESMTP
ehlo test
250-mail.example.com
250-PIPELINING
250-SIZE 40960000
250-ETRN
250-STARTTLS
250-AUTH PLAIN LOGIN
250-AUTH=PLAIN LOGIN
250-ENHANCEDSTATUSCODES
250 8BITMIME
auth login
334 VXNlcm5hbWU6
dXNlcg==
334 UGFzc3dvcmQ6
cGFzc3dvcmQ=
235 2.7.0 Authentication successful
quit
221 2.0.0 Bye
Connection closed by foreign host.

Friday, February 25, 2011

1) Perform an AUTH PLAIN login to server1.example.com
with your stationX credentials.

2) Use AUTH LOGIN to login to server1.example.com with
the same credentials.

3) Decode the Base64 responses the server uses on AUTH
LOGIN.

LAB 1

Friday, February 25, 2011

AUTH CRAM-MD5

AUTH CRAM-MD5 is yet another authentication mechanism. It’s quite
a bit more complex, and generally only manually tested using a tool to
generate the credentials.

CRAM - Challenge/Response Authentication Mechanism.

MD5 - Message Digest algorithm 5

Thanks to the use of the MD5 algorithm, CRAM-MD5 is a much more
secure form of authentication, because the password is hashed before
being sent on the wire. CRAM-MD5 RFC:

http://tools.ietf.org/html/rfc2195

Friday, February 25, 2011

AUTH CRAM-MD5

After the client sends the “AUTH CRAM-MD5” command, the
server responds with a Base64 encoded challenge.

The client decodes the challenge, and incorporates it into the
response. This particular method is known as “Keyed hashing”
and is fully described in RFC 2104:

http://tools.ietf.org/html/rfc2104

Friday, February 25, 2011

AUTH CRAM-MD5

The response is the Base64 encoding of:

<user><space><md5-response>

Where <user> is the username, and <md5-response> is:

MD5(('password' XOR opad), MD5(('password' XOR ipad), challenge))

Definitions for ipad and opad: !RFC 2104 §2

Friday, February 25, 2011

http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104

AUTH CRAM-MD5

As you can see, CRAM-MD5 is a bit more tedious if you were to
calculate everything by hand. If CRAM-MD5 needs to be tested/
verified, it is best to use a tool such as gen-auth:

http://www.jetmore.org/john/code/gen-auth

Friday, February 25, 2011

ENCRYPTION

Up until this point, all traffic exchanged between clients and
servers have been in clear text, or unencrypted form.

This is fine for many situations, but sometimes additional security
is necessary, and for that, there is an SMTP extension for
tunneling the SMTP session inside an encrypted TLS tunnel.

http://tools.ietf.org/html/rfc3207

Friday, February 25, 2011

TLS

TLS stands for Transport Layer Security, and is a protocol used to
encrypt all traffic above the Transport layer.

This makes TLS perfect as an add-on for SMTP, because once the
TLS session is negotiated, all communication continues as defined
in the RFC.

If the word “SMARTTLS” is included in the EHLO responses, then
the server supports encrypted SMTP via TLS.

Friday, February 25, 2011

TESTING TLS

The only way to manually test a TLS enabled mailserver is to use a tool that
will manage the TLS layer behind the scenes, passing the decrypted
information back to the screen:

openssl s_client -starttls smtp -crlf -connect 10.20.30.40:25

This tells openssl to start a secure client (s_client) session, allowing for a

roughly telnet-like interface to the user, but encrypting the communication
using TLS.

-starttls tells openssl to connect in plain text initially, then switch to
TLS using the appropriate commands for the given protocol (SMTP).

-crlf tells openssl to convert bare line feeds into carriage return line feeds.

Friday, February 25, 2011

1) Find a mail server that supports TLS and initiate a secure
connection to that server. Verify connectivity by issuing a
few SMTP commands.

LAB 2

Friday, February 25, 2011

FIXUP

The Fixup feature found on many Cisco devices can be a really
helpful tool, because it can dynamically rewrite some application
layer messages to have the correct network information in them
(think NAT-ing) so the protocol will function through firewalls
and translating routers.

The problem is, the Fixup implementation for SMTP only works
for the original, basic SMTP protocol. Not ESMTP, which is where
we find all of our nifty features like TLS and AUTH.

Friday, February 25, 2011

FIXUP

If you are testing a mail server and see things like

220 ******************

Then you have a mail server behind a Cisco device that’s running
the Fixup feature, and it will hose most SMTP traffic.

A quick google search will turn up copious documentation about
this issue.

Bottom line: Do not use the Fixup feature with SMTP.

Friday, February 25, 2011

slideshow.end();

Friday, February 25, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

ADVANCED HEADERS
MIME! X-Headers!

Friday, February 25, 2011

MIME

Email messages and SMTP were designed to move textual
information around the network. And at first, this was all that
was necessary.

Over time, though, transmitting different forms of data
became important. Being able to email files, pictures or
anything else proved to be an important function.

But how to transmit raw binary data through a simple text-
based protocol?

MIME! Multipurpose Internet Mail Extensions!

Friday, February 25, 2011

RFC MADNESS!

MIME has several RFC’s:

http://tools.ietf.org/html/rfc2045

http://tools.ietf.org/html/rfc2046

http://tools.ietf.org/html/rfc2047

http://tools.ietf.org/html/rfc4288

http://tools.ietf.org/html/rfc4289

http://tools.ietf.org/html/rfc2049

Friday, February 25, 2011

MIME

Now, if you were going to implement a MIME library to
create and parse MIME content, then you would need to dig
through every single one of those RFC’s with a fine-toothed
comb.

Fortunately, in this class, we are only seeking a basic
understanding of MIME. :)

Friday, February 25, 2011

MIME HEADERS

The first header to look for is the MIME-Version header.
The presence of this header indicates that the message is
formatted to the MIME specification.

MIME-Version: 1.0

Note that the version number will always be 1.0 due to some
issues that were encountered when an attempted change
was made. There have, of course, been many updates and
revisions to the MIME protocol.

Friday, February 25, 2011

MIME HEADERS

The Content-Type header is a very important one, used to
describe the contents of the message. The most basic is
“text/plain” as:

Content-Type: text/plain

This is interpreted to mean that the contents of the rest of
the message are in a plain text format.

This header allows for the most important aspect of MIME
messages: the Multipart message!

Friday, February 25, 2011

MULTIPART MIME

Content-Type: multipart/mixed

The multipart/mixed content type declares the message to
contain various, mixed parts. Usually a text/plain part, with
one or more other parts.

multipart/alternative is another multipart content
type. The alternative indicates that there are alternative
forms of the message which can be displayed, based on user
preference. Usually a text/plain and a text/html.

Friday, February 25, 2011

MULTIPART MIME

When a multipart message is created, an additional field is
added to the content-type header: the boundary.

Content-Type: multipart/mixed; boundary=”here”

The boundary is used to segment each of the parts of the
multipart message. The last or ending boundary will have “--”
appended to indicate it is the final boundary marker.

At each boundary, additional Content-* headers can be added.

An example illustrates these concepts...

Friday, February 25, 2011

To: <test@example.com>
...More Regular Headers...
MIME-Version: 1.0
Content-Type: multipart/alternative;
 boundary="----=_Part_8571692_700621548.1293443597341"

------=_Part_8571692_700621548.1293443597341
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 7bit

Text/plain message here!

------=_Part_8571692_700621548.1293443597341
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: 7bit

<html>
 <body>
Text/html message here!
 </body>
</html>
------=_Part_8571692_700621548.1293443597341--

Friday, February 25, 2011

CONTENT TRANSFER
ENCODING

The Content-Transfer-Encoding header is used to identify
the binary to ascii encoding scheme used for the data. Most
common:

7bit - Default for plain text - human readable

quoted-printable - Similar to 7bit, but supports a few
more characters - mostly human readable

base64 - Encodes arbitrary data - not human readable.

Friday, February 25, 2011

To: <test@example.com>
...More Regular Headers...
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="----=_Part_4_3415473.1293093601660"

------=_Part_4_3415473.1293093601660
Content-Type: multipart/alternative;
 boundary="----=_Part_3_32680187.1293093601660"

------=_Part_3_32680187.1293093601660
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

The quick brown fox!

------=_Part_3_32680187.1293093601660
Content-Type: text/html; charset=us-ascii
Content-Transfer-Encoding: 7bit

<html>
<body>
More quick brown foxen!
</body>
</html>

------=_Part_3_32680187.1293093601660--

------=_Part_4_3415473.1293093601660
Content-Type: application/pdf; name=attachment-file.pdf
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=attachment-file.pdf

JVBERi0xLjAKMSAwIG9iaiA8PCAvVHlwZSAvQ2F0YWxvZyAvUGFnZXMgMiAwIFIgPj4gZW5kb2Jq
CjIgMCBvYmogPDwgL1R5cGUgL1BhZ2VzIC9Db3VudCAxIC9NZWRpYUJveCBbIDAgMCA2MTIgNzky
..... SNIP
MjcgMDAwMDAgbiAKMDAwMDAwNTY3NSAwMDAwMCBuIAowMDAwMDA1ODQ1IDAwMDAwIG4gCjAwMDAw
MDU5NjQgMDAwMDAgbiAKdHJhaWxlcgogPDwgL1NpemUgMTQgL1Jvb3QgMSAwIFIgPj4Kc3RhcnR4
cmVmCjM1OTc3CiUlRU9GCg==
------=_Part_4_3415473.1293093601660--

Embedded
multipart/alternative

part. So flexible!
Notice new boundary?

Friday, February 25, 2011

CONTENT
DISPOSITION

The Content-Disposition header is used to mark parts as
attachments (not displayed directly in the message) or
inline (displayed inline with the message body)

Note that many MUA’s will not, by default, display inline
content for security reasons.

For attachment disposed content, a filename is often
provided in the header for a suggested name if the
attachment is to be saved locally.

Friday, February 25, 2011

ADDITIONAL CONTENT
TYPES

Some of the other common content types include:

image/jpeg

application/octet-stream

application/ms-word

audio/mp3

Lists and definitions can be found in the RFC’s, or google

Friday, February 25, 2011

X-HEADERS

Finally, the last header that merits some discussion is the X-header.

Actually, there are lots X Headers. Because X Headers were created
to allow for arbitrary headers.

Any header starting with “X-” is an X Header, and is not officially
defined by an RFC or any other standard, though googling will
produce lists of common X Headers.

Trivia: The original RFC for messages (822) declared the prefix
“X-” to be off limits for defined names, and therefore usable
privately. Updates to that RFC do not include the declaration, but
the “X-” names stuck and are commonly used everywhere

Friday, February 25, 2011

1) Open a text editor and manually piece together a MIME
message containing a text part and an html part. Include
an X header that you make up. Manually send it to a
personal email address you have access to from the
classroom. Try directly sending to the MX host specified
for your domain.

2) Check your personal email and verify the MIME parts.
Also, check for your X header.

LAB 1

Friday, February 25, 2011

slideshow.end();

Friday, February 25, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

