
RHCSA + RHCE
BOOT CAMP

A whole week of geeky fun!

ABOUT THE CLASS

40 hour boot-camp style prep course

Monday-Thursday: Lecture and labs

Friday: Practice exams

Hours:

8:30am - 5:00pm

Lunch: 11:45am - 1:00pm

ABOUT THE
INSTRUCTOR

Nathan Isburgh

instructor@edgecloud.com

Unix user 15+ years, teaching it 10+ years

RHCE, CISSP

Forgetful, goofy, patient :)

ABOUT THE STUDENTS

Name?

Time served, I mean employed, at Rackspace?

Department?

Unix skill level?

First attempt at RHCSA/RHCE or equivalent?

What are you most worried/interested about with RHCSA/
RHCE?

EXPECTATIONS OF
STUDENTS

Strong foundation in basic Linux use and administration

Ask Questions!

Complete the labs

Email if you’re going to be late/miss class

Have fun

Learn something

Pass your exam!

ABOUT RHCSA EXAM

The RHCSA exam is 100% hands-on. You will have a
computer and a list of tasks to accomplish. When you are
finished, an automatic grader will check your machine to be
sure that everything is set up correctly.

There are no questions, only tasks.

You will have 2.5 hours and access to all RHEL 6 Server
software.

You will not have internet access.

ABOUT RHCE EXAM

After successfully passing RHCSA, the next certification is
RHCE: Red Hat Certified Engineer.

The RHCE exam is also 100% practical, and it is 2.0 hours
long. Most of the focus on this certification is configuring
network services.

RHCE CERTIFICATION

Note that RHCE certification is not granted until both
RHCSA and RHCE on RHEL 6 have been passed.

RHCSA = local machine settings, basic network access

RHCE = network services

TO PASS EXAMS:

Details specific to RHEL v. 6

Basic System Administration and Unix interaction

Configuration and deployment of storage and filesystems.

Implementation of networking and basic security / traffic filtering
technologies

Configuration of all major services / daemons

Locating Local Reference Materials (--help, man)

Red Hat might even install non-standard software to check that the
candidate can locate documentation!

SCHEDULE

Monday

Tuesday

Wednesday

Thursday

Friday

Booting, Packages, System Administration, File Systems

Users, Kernel Features, File Sharing, Web Services,
Network Security, Virtualization

RHCE System Administration, PAM, Kerberos,
Software RAID, RHCE File Sharing

CGI Scripting, Squid, RHCE Network Services, DNS,
Email, RPM’s, iSCSI

Practice Exams

slideshow.end();

RHCSA
BOOT CAMP

The Boot Process

OVERVIEW

The boot process gets a machine from the useless off state to
the feature rich operating system we all know and love

Requires cooperation between hardware and software to
correctly hand off processing

Akin to the life cycle of a human - birth, newborn, infant,
toddler, teen, adult

BIRTH

Power switch flipped on

Electricity flows from wall, through power supply where it
gets converted to the levels necessary for the computer, and
on to the motherboard, drives, CPU and more

Completely unaware of the world or even what’s attached to
the motherboard.

INFANT

BIOS - Basic Input/Output System - CPU looks for
instructions starting at a specific address, which happens to
be where BIOS resides. BIOS initializes and starts the....

POST - Power On Self Test - A simple set of tests that BIOS
performs to verify basic functioning of attached hardware.

Like an infant, extremely limited understanding of world

Searches for valid MBR, loads the software found there and
transfers control to the...

TODDLER

Boot Loader - Special software installed to the MBR of the
boot partition which selects and loads the kernel.

Can be configured to immediately load the default OS, or
can offer choice to user

Slightly better understanding of world - can read linux
filesystems, sometimes includes powerful debugging and
configuration support.

Main job: select and load kernel, transfer control to kernel

TEENAGER

Dreaded teenager age: knows a lot about the world, but
doesn’t contribute a thing. Still pretty useless.

Kernel loads and initializes. Device drivers are loaded and
initialized. Basic hardware checks performed.

The First Process is created from nothing: init

ADULT

init loads the inittab, specifying what the default runlevel should
be, then additional configuration files specify what software needs
to be started. init starts running all of the specified startup scripts
at this point.

Services are started by init, including network configurations, X
Windows, network services, databases, etc.

At this point, the machine is finally becoming useful: otherwise, an
adult

Eventually, login processes are started and the boot process is
complete!

MORE ON INIT

RHEL 6 marks Red Hat’s departure from the old style SystemV
initialization framework. Time to [mostly] forget about inittab!

RHEL 6 now uses Upstart to handle startup, shutdown and
service management.

http://upstart.ubuntu.com

The only configuration /etc/inittab provides anymore is
what the default runlevel should be, as Upstart supports the
notion of runlevels to ease transition from SysV style
initialization to Upstart.

UPSTART

The configuration files for Upstart are under:

/etc/init

Files in this directory detail configuration for certain global
events, like ctrl-alt-delete, as well as maintaining TTY gettys,
handling runlevels and more.

A runlevel defines what services are running...

RUNLEVELS

Runlevels:

S: System startup

0: OS stopped, machine halted (usually powers off as well)

1: Single user mode - for maintenance

2: Multiuser, no NFS shares

3: Full multiuser, TUI

4: Unused

5: Full multiuser, GUI

6: Reboot

RUNLEVELS

telinit: Signal the init process to change the current
runlevel

Switching runlevels is fairly uncommon - generally only
used if system maintenance needs to be performed

Runlevels can be used to control what services a machine
provides, and can sometimes be useful to quickly
reconfigure a machine for a new task

UPSTART OVERVIEW

So the basic flow of operation for Upstart is as follows:

At bootup, the kernel starts /sbin/init. After /sbin/

init loads configuration files and is ready, the first event

is emitted: startup

The startup event causes /etc/init/rcS.conf to

fire, which in turn runs the familiar /etc/rc.d/
rc.sysinit. After rc.sysinit finishes, rcS.conf

uses /etc/inittab to determine the default runlevel,

then runs telinit to that runlevel.

UPSTART OVERVIEW

telinit emits the runlevel event, which fires off /etc/

init/rc.conf

rc.conf fires off the familiar /etc/rc.d/rc script with

the appropriate runlevel to fire off all of the startup scripts in
the appropriate /etc/rcX.d directory.

WHEW!

All of this, mainly so that the transition to Upstart is relatively
painless for the system administrators more comfortable with
SysV initialization.

INIT SCRIPTS

What is actually running in a given runlevel is defined by the
init scripts for that level.

That standard location for the init scripts is:

/etc/rcX.d

Where the X corresponds to the runlevel

For example, /etc/rc5.d contains all of the init scripts
that, combined, provide runlevel 5 service

RC DIRECTORIES

The files in the rc directories start with either an S or a K:

S means to start the service, ie run the command with
“start” as an argument

K means to kill the service, ie run the command with
“stop” as an argument

After the S or K, there is a two digit number which is used
for ordering the execution of the scripts

ENTERING A
RUNLEVEL

So when the init process “enters” a runlevel, the steps are:

Run all of the Kill scripts, in order, with “stop” as an
argument

Run all of the Start scripts, in order, with “start” as an
argument

INIT SCRIPTS

If you look closely, you will see that /etc/rcX.d actually
holds a collection of symbolic links

The actual script files are stored in /etc/init.d

The main reason for this is so that there is only one copy of
each init script, reducing the chance that a script change
won’t be reflected in all runlevels.

You can run the scripts directly, or use the service
command to start/stop various components of the OS.

MANAGING INIT
SCRIPTS

You can manage the links to the init scripts manually, or you
can use the chkconfig command to get the job done:

chkconfig --list

List all processes and display their default status in each
run-level.

chkconfig [--level levels] name <on|off|reset>

This command will modify the chkconfig configuration for a
particular service, setting it on/off for the given runlevels.

GRUB

Grand Unified Boot Loader

Recall that GRUB is responsible for the initial kernel load at
boot time.

Using GRUB, an administrator can control what kernel is
loaded, what options are passed to the kernel, as well as
initial ramdisk configurations.

GRUB
CONFIGURATION

GRUB’s configuration file is /boot/grub/grub.conf, which is configured as

follows:

default=0

timeout=10

splashimage=(hd0,0)/grub/splash.xpm.gz

title RedHat Enterprise Linux

! root (hd0,0)

! kernel /vmlinuz ro root=LABEL=/

! initrd /initrd

GRUB SHELL

Command mode – Pressing “c” while the boot menu is displayed will
provide the user with the GRUB shell, where a limited set of commands
can be used to explore the filesystem before booting. A full list of the
commands available can be found by pressing Tab while in command
mode.

Editing mode – Pressing “e” while the boot menu is displayed will provide
the user with the opportunity to edit a line in GRUB’s configuration file.

Append mode – Pressing “a” while the boot menu is displayed will allow
the user to append to the kernel line for the default kernel in GRUB’s
configuration file

Esc – can be pressed at any time to return you to the previous menu

BOOTING TO A GIVEN
RUNLEVEL

Using GRUB, add a number to the end of the kernel
command line to override the default runlevel.

Also, adding the letter “s” or the word “single” to the end
of the command line is very important: this boots into single
user mode, which by default, will not require a password to
obtain a root shell.

Very important!

LAB

1. Reboot your machine into the single user runlevel and
verify root access without a password.

2. Review a few of the init.d scripts

3. Review the configuration files in /etc/init

slideshow.end();

RHCSA
BOOT CAMP

Package Management

RPM

Redhat Package Manager

RPM’s provide full software packaging features: pre-install
scripts, post-install scripts, dependencies, meta information,
and an installed software database to name a few.

The RPM system maintains a database of all installed
software on a machine - this is useful for tracking and
updating reasons, as well as dependency verification and
software management.

RPM

rpm: The Redhat Package Manager tool. Provides interface
to RPM system, performing queries, installs, upgrades,
uninstalls and general database maintenance operations.

-i option: install the given package

-q option: query the database

-e option: erase the given package from the system

RPM QUERIES

Below are just a few examples of the types of queries you can run against
the RPM database.

rpm -qa Queries for the names of all installed rpms.

rpm -qi Queries the rpm database for package information.

rpm -qf Determines which rpm a file is associated with.

rpm -ql! Queries the rpm database to determine which files are
 associated with a particular rpm.

With any of these commands, you can add the -p option to run the

command against a package before it is installed.

RPM INSTALLATION
VERIFICATION

In addition to storing information about where a package is
installed, rpm also stores permissions, file sizes, md5sums,

and ownership information. This information can be easily
referenced to see if anything has been changed.

rpm -Va Verifies all installed packages.

rpm –Vi <package> Verifies given package.

Rackspace Best Practice Example

rpm –Va | grep ^..5

RPM VERIFY OUTPUT

S File Size differs

M Mode differs (includes permissions and file type)

5 MD5 sum differs

D Device major/minor number mismatch

L readLink(2) path mismatch

U User ownership differs

G Group ownership differs

T mTime differs

C SELinux Context differs

EXTRACT RPM
CONTENTS

Use this technique to make a clean working copy of the files and directories
that would be installed with a package.

cd /temp/dir

rpm2cpio /path/to/package | cpio -i –d –m

This would allow you to:

Replace one corrupted file without un-installing and then re-installing a
package

Compare original configuration files versus modified files in the running
system to quickly locate changed lines, for example with the ‘diff’ utility

YUM

yum: Yellowdog Updater Modified

Supports package installation over the network through
repositories.

RPM backend

Simple interface

REPOSITORIES

Repositories of packages must be listed in files in the /etc/

yum.repos.d directory with names ending in .repo and having a

format like:

[label-for-repo]

name = descriptive text

baseurl = protocol://path/to/directory/of/packages

Access to the Red Hat Network, including any Satellite Servers, is
implemented through a plugin to the yum tool itself and not as a
repository definition in the above format.

LAB

1. Connect to http://server1.example.com and read the information
there.

2. Download the OpenOffice archive from server1 and choose an
appropriate location to extract all its RPMs

3. Install the createrepo package and use it to to turn your
collection of OpenOffice packages into a yum repository

4. Add that repository to your local yum configuration

5. Using yum, install the “openoffice.org3-writer” package, and/or
any others from your new repository

slideshow.end();

RHCSA
BOOT CAMP

System Administration

INSTALLATION

Installing RHEL 6 is a straightforward process when
performed interactively. I expect every single person in here
can install RHEL 6 from media.

Unattended install using a Kickstart file is another matter
entirely, though.

KICKSTART FILES

Fortunately, Kickstart files are extremely simple to understand and
create.

A Kickstart file is a flat text file which answers all of the installation
questions automatically. Therefore, logically, it contains details on:

Partitioning and filesystems

Software packages

Users, Groups, Passwords

Features, networking and more

KICKSTART FILES

There are three primary means of creating a Kickstart file:

From scratch

From an existing Kickstart file (perhaps from a recent
install?)

Using system-config-kickstart

LAB

1. Examine /root/anaconda-ks.cfg

2. Install and run system-config-kickstart and create
a simple kickstart file to install a basic desktop RHEL 6
machine.

NETWORK
CONFIGURATION

There are two main approaches to configuring a machine for network
access:

Static configuration

Dynamic configuration

Static configuration uses set parameters for the configuration, which is
known by the machine and the network and never changes. Generally
used with servers.

Dynamic configuration configures network machines on the fly, where a
service on the network provides all configuration parameters to a
machine when it joins the network. Generally used with workstations.

DYNAMIC
CONFIGURATION

Dynamic configuration is the easiest to use.

The machine just needs to set up it’s interfaces with the
DHCP protocol.

DHCP: Dynamic Host Configuration Protocol.

A lease is obtained from the DHCP server, providing all
network configuration details for the client. The lease
expires after some amount of time and is renewed by the
client to maintain network access.

STATIC
CONFIGURATION

Static configuration requires four configuration parameters
in order to allow full network functionality:

IP Address

Netmask

Default Gateway or Router

DNS Server(s)

DNS?

Domain Name Service: This is the glue between network
names and IP addresses.

Remember: Humans like names, computers like numbers.
DNS is a service like so many others, mapping names to
numbers and numbers to names. Mostly a convenience.

Also provides for email functionality, geographic load
balancing and limited service failover capabilities.

STATIC
CONFIGURATION

The first two components of static configuration are IP
address and netmask.

These provide LAN-level access

To view current address:

ip addr list

GATEWAYS

The third configuration parameter is the default gateway.

Provides access to inter-networking, or moving from just
the local LAN to other LAN’s

To see the current routing entries:

ip route show

DNS SERVERS

Final piece of configuration information.

List of one or more IP addresses which provide the DNS
service, allowing name to IP address mapping

To view current nameservers, see:

 /etc/resolv.conf

Also consider /etc/nsswitch.conf

STATIC
CONFIGURATION

Once all four pieces of information are configured on the
system, full network service will be available.

To test local connectivity, try pinging the gateway

To test inter-networking connectivity, try pinging 8.8.8.8
or some other external IP address.

To test name resolution, try pinging google.com or
another public DNS name.

CHANGING
NETWORKING

To change the IP address, hostname, netmask and gateway,
you have to edit two configuration files:

/etc/sysconfig/network-scripts/ifcfg-eth0

/etc/sysconfig/network

/ETC/SYSCONFIG/NETWORK

NETWORKING={yes|no}

HOSTNAME=<fqdn>

NISDOMAIN=<nis domain name>

IFCFG-* FILES

To configure a device to use dhcp, the ifcfg file should
contain the following:

DEVICE=eth0

BOOTPROTO=dhcp

ONBOOT=yes

IFCFG-* FILES

To configure a device with static settings, the ifcfg file should contain
the following:

DEVICE=eth0

BOOTPROTO=none

IPADDR=<ip>

NETMASK=<netmask> (or PREFIX=<net bits>)

ONBOOT=yes

GATEWAY=<gateway ip>

NETWORK MANAGER

In RHEL 6, Network interfaces are now handled via Network
Manager. Some notable commands/tools:

nmcli - simple CLI to Network Manager

nm-connection-editor - excellent GUI tool for
managing all network connections.

On the test, you should decide if you are going to use Network
Manager or not, and if so, only use NM and don’t edit the
config files by hand. Otherwise, disable NM and edit the files
by hand.

LAB

1. Determine your current network settings (which were assigned by
DHCP) and change your machine to a static network configuration
using these settings.

2. When you are satisfied with your configuration, restart the network
service to put your changes into effect.

3. Test your connectivity to server1 to make sure you are still online.

4. Refer back to DHCP settings if necessary to correct any mistakes in
your static configuration.

5. Once complete, switch everything back to DHCP.

CRON

crond is the cron daemon. Cron provides for the ability to
execute commands on a regular basis.

Generally used to run hourly, daily and weekly type system
maintenance scripts.

Also useful to run reports, cleanup jobs and much, much
more.

SYSTEM CRONS

/etc/anacrontab defines the system cron jobs.

Many distributions use the run-parts script to execute
all scripts found in /etc/cron.hourly, /etc/
cron.daily, etc on the appropriate schedule.

/etc/anacrontab defines the times for each schedule:
daily, weekly, monthly

Due to limitations in anacrontab, the hourly scripts are

configured to run via /etc/cron.d/0hourly

USING CRON

Cron is controlled through crontab files.

There are system-wide crons, accessible under

/etc/cron.*

Every user has their own crontab, accessible through the
crontab command

CRONTAB

crontab: View, edit or remove crontabs

The -l option prints the crontab. The -e option opens
the crontab for editing. The -r option removes the
crontab.

Root can work with the crontab for any user by specifying
the username on the command line:

crontab -e -u bob

CRONTAB SYNTAX

There are two main components to a crontab entry:

The timespec specifies when the command should be run

The command is what gets executed every time the
timespec is matched

CRONTAB TIMESPECS

The timespec is broken down into 5 fields, separated by
spaces:

minute hour day-of-month month day-of-week

Each field can contain a number, a range of numbers, a
comma-separated list of numbers, an asterisk or a number
slash division rate

Mostly self-explanatory - some examples will help...

TIMESPEC EXAMPLES

0 23 * * * 11pm every day

30 * * * 1-5 30 minutes after every hour, M-F

0 7 1 * * 7am, first of every month

* * * * * Every single minute

0,10,20,30,40,50 * * * * Every 10 minutes

*/5 8-17 * * 1-5 Every 5 minutes, 8am-5pm, M-F

EXAMPLE CRONTAB

There are various additional options and features available
to the cron system. Check the man pages for reference:

cron, crontab (sections 1 and 5)

01 4 * * * /usr/local/bin/restart-webserver
00 8 1 * * /usr/bin/mail-report boss@mycompany.com
*/5 * * * * /monitor/bin/check-site -e admin@mycompany.com -o /var/log/check.log

LAB

1. Create a cronjob for the user root that checks the amount
of available space on the system every Friday at 12:34pm.

2. Create a cronjob as a regular user that lists the contents
of /tmp at 3:54am on Sunday, January 2.

LOGS

One of the easiest places to find the cause of a problem is in
the log files.

Log files store informational messages from software. The
types of messages include debug information, status
information, warnings, errors and more.

Some applications manage their own log files. Others use
the system-wide logging package...

SYSLOG

rsyslog - The system logger. A framework consisting of a
library, a daemon, a configuration file and logs.

Any application can use the library and log messages through
rsyslog with simple function calls.

Log messages consist of 3 parts:

Facility

Level

Message

SYSLOG

The facility describes what part of the operating system
generated the message, and is selected by the software:

auth, authpriv, cron, daemon, ftp, kern, lpr,
mail, news, security, syslog, user, uucp,
local0-local7

The level represents the importance of the message, and is also
chosen by the software:

emergency, alert, critical, error, warning,
notice, info, debug

/ETC/RSYSLOG.CONF

/etc/rsyslog.conf defines where all of the log messages should go.
Destinations include files, screens of logged in users, console, other syslog
servers. Additional configuration is available as well.

Basic rule format:

facility.level destination

Examples:

*.err /dev/console

mail.* /var/log/maillog

*.info;mail.none;authpriv.none /var/log/messages

/VAR/LOG

maillog: messages from the email subsystem

secure: authentication and security messages

cron: cron messages

boot.log: boot messages

messages: catch-all

dmesg : hardware and kernel events generated before syslogd

REMOTE LOGGING

Setting up remote logging with rsyslog is trivial:

Make sure a hostname is set up on each machine

Make sure server firewall has holes for port 514 udp/tcp

REMOTE LOGGING
SERVER

On the server, add to rsyslog.conf:

$ModLoad imudp.so

$UDPServerRun 514

$ModLoad imtcp.so

$InputTCPServerRun 514

Restart rsyslogd

REMOTE LOGGING
CLIENT

On the client, add to rsyslog.conf:

. @loghost.fqdn # for udp

. @@loghost.fqdn # for tcp

Restart rsyslogd

Consider using the Action Queue parameters to improve
reliability. See bottom of rsyslog.conf for example.

LOGS

As mentioned earlier, not all software uses the syslog
framework to handle it’s logging. Quite a bit of software
manages it’s own logs.

This can make it difficult to track down all of the log
locations on an unfamiliar system. The best way to handle
this is to start from the init scripts...

LOCATING
APPLICATION LOGS

To track down the log file location for an application, you need
to find it’s configuration file so you can see where the logs are
being written.

Of course, finding the configuration file might be just as
difficult, so it’s best to start at the source.

init starts all of the system services, and so there is an init
script somewhere that is starting up the application in
question.

The init script almost always references the configuration file

LOCATING
APPLICATION LOGS

Now that the configuration file location is known, it only
takes a few moments to scan through it and find out where
logs are being written.

As for the format of the log file, that’s completely dependent
on the application. Some will be similar to syslog, others,
like Apache or Qmail, will be completely foreign looking.

Fortunately, a little common sense and judicious application
of Google Ointment will get the information you seek.

MAINTAINING LOGS

/etc/logrotate.conf!

This is the main configuration file for logrotate.

/etc/logrotate.d/!

EVERYTHING in this directory will be parsed as if it is a logrotate
configuration file. Usually, applications such as Apache and Sendmail
will have configuration files in this directory to control how their logs
will be rotated.

logrotate -vf /etc/logrotate.conf

Can be run as root at any time to force log rotation and check for errors.

TROUBLESHOOTING

There will be some basic troubleshooting objectives on the
exam, mostly to test basic knowledge of how permissions
should work, SELinux and locating error messages in log
files.

Mentioned here are a few useful tools to remember

TOP

top: Self-updating tool displays combination summary at top,

followed by ordered list of processes. Fully customizable.

The summary includes uptime information, memory
breakdowns, CPU utilization and process state summaries

The process display can be customized and sorted to suit need

top - 16:39:32 up 682 days, 10:41, 2 users, load average: 0.01, 0.00, 0.00
Tasks: 118 total, 1 running, 116 sleeping, 1 stopped, 0 zombie
Cpu(s): 0.1%us, 0.0%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.1%st
Mem: 262316k total, 258024k used, 4292k free, 7380k buffers
Swap: 524280k total, 74564k used, 449716k free, 67808k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1 root 15 0 10316 648 592 S 0 0.2 0:06.24 init
 2 root RT 0 0 0 0 S 0 0.0 0:04.88 migration/0
 3 root 34 19 0 0 0 S 0 0.0 0:00.19 ksoftirqd/0

DF

df: lists filesystem utilization

Breaks down size and use information for each mounted
filesystem

-h is useful option to display in “human-friendly” format

[root@dev1 ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 9.4G 7.2G 1.8G 81% /
none 129M 0 129M 0% /dev/shm
[root@dev1 ~]#

LDD, LDCONFIG

ldd: List library dependencies

ldconfig: Update library location database

/etc/ld.so.conf and /etc/ld.so.conf.d/*.conf
for list of pathnames to search for libraries, creates
database for dynamic linker

[root@dev1 ~]# ldd /bin/bash
! libtermcap.so.2 => /lib64/libtermcap.so.2 (0x00002ac044572000)
! libdl.so.2 => /lib64/libdl.so.2 (0x00002ac044775000)
! libc.so.6 => /lib64/libc.so.6 (0x00002ac044979000)
! /lib64/ld-linux-x86-64.so.2 (0x00002ac044357000)
[root@dev1 ~]# cat /etc/ld.so.conf.d/mysql-x86_64.conf
/usr/lib64/mysql
[root@dev1 ~]# ldconfig
[root@dev1 ~]#

NICE LEVEL

The nice level represents one influence on the calculations
the kernel uses when assigning priorities.

Originally designed and named to allow users to be “nice” to
other users of the system by assigning a higher nice value to
an intensive process, which in turn lowers it’s priority.

Ranges from -20 to 19. Default nice level is 0.

Only root can assign negative nice values.

See nice and renice commands

LAB

1. Take a few minutes to browse through the various logs in /var/log.
Familiarize yourself with the kinds of information available.

2.Browse the man page for rsyslog.conf

3.Find where the audit service keeps its log and add a corresponding
new entry to your logrotate configuration. Force a rotation to see
everything work.

4.Remove the audit logrotate configuration and restart the auditd
service.

5. Locate the PIDs of the highest memory and highest CPU utilization
processes. Play with their nice levels.

6.Work with a neighbor to set up remote logging from your station to
theirs, and theirs to yours. Verify using logger.

slideshow.end();

RHCSA
BOOT CAMP

Filesystem Administration

PARTITIONING

What is partitioning?

Splitting up a hard drive into organizable chunks

Why?

Isolates filesystem corruption

Simplifies/speeds backups

Allows optimizing filesystems to tasks

FDISK

fdisk: partitioning tool

Works on one disk at a time, allows for viewing and
manipulating partition table.

Online help (hit ‘m’) makes tool easy to use

At boot, the kernel loads a copy of the partition table into
memory. Most partition editing commands only update the
partition table on the drive, and not in memory. As such, the

command partprobe can be run to update the information
that the kernel has in memory.

MKFS

mkfs: format a device to create a new filesystem

“Paints the parking stripes” for the filesystem structure

Creates superblock, block groups, superblock copies,
bitmaps and inode tables and creates basic structure on
disk

Through -t option, mkfs can create different types of
filesystems

EXT2

Benefits

Default file system for pre - 7.x versions of Red Hat

Heavily tested / Rock solid stability

Drawbacks

Does not have a journal

File system check (fsck) required to mount a “dirty” file system

System offline and unavailable while fsck is running

EXT3

Benefits

Default file system of the old 7.x Red Hat to RHEL 5.x releases

Based on proven stability of Ext2

Has journal for increased reliability

Drawbacks

Inodes allocated when file system is created (other file systems create
them dynamically as they are needed)

Not as efficient as other file systems when dealing with lots of small files

EXT4

Benefits

Default file system of RHEL 6.x releases and newer

Built from a series of extensions to ext3

Many improvements over ext3, including larger scales, timestamps,
performance and more

Drawbacks

Inodes allocated when file system is created (other file systems create
them dynamically as they are needed)

Delayed allocation can potentially lead to data loss (patches in place)

JOURNALING

Journaling - How does it help?

Deleting a file in Linux requires two steps:

1. The file’s directory entry must be removed.

2. The file’s inode must be marked as free in the free space map.

If step 1 happens before a crash, an inode will be orphaned and the file will be lost.

If step 2 happens first before a crash, the inode will be marked free and will
possibly be overwritten.

Journaling keeps a journal of the changes that are planned for the file system
ahead of time. The journal can then replay the changes in the journal at any time
to keep the file system clean.

FILESYSTEM
INTEGRITY CHECKS
fsck: Filesystem Check

Generally only run when a filesystem needs it:

Mount count

Last check

Dirty

Checks all of the filesystem structures for accuracy and
completeness

FILE SYSTEM TOOLS

e2label: View/set filesystem label

tune2fs: View/set filesystem attributes

mount/umount: You better know these already. :)

FSTAB

/etc/fstab is parsed during boot by rc.sysinit to
determine what file systems should be mounted and how.
After boot, this file is referenced by the mount command.

The file is space delimited and organized as follows:

device mount_point fs_type options dump fsck

LAB

1. Using fdisk, create a new 100MB partition.

2. Create a new filesystem on this partition using ext4, a blocksize of
1k, and a reserve space of 2%. Confirm settings with tune2fs.
Mount the new filesystem as /u01 and set it to mount at boot.

3. Un-mount the /u01 filesystem and force an integrity check. Re-
mount the /u01 filesystem. Use e2label to set the filesystem label
on /u01 to ‘/u01’.

AUTOMOUNT

The autofs service can be configured to monitor certain
directories and automatically mount a file system when a
call is made to files in that directory.

When autofs starts, it parses the configuration file /etc/

auto.master to determine which directories it should be
monitoring. Each directory can then have its own
configuration file determining how each file system should
be mounted, or the default file /etc/auto.misc can be
used.

AUTO.MASTER

Basic format for auto.master:

Path Config file

/misc!! /etc/auto.misc

This tells automountd to “watch” the /misc pathname for
activity, and if activity is observed, consult /etc/

auto.misc for instructions.

AUTOMOUNT PATH
CONFIG FILES

Basic syntax:

path options mount device

nfs!! -fstype=nfs,ro!! nfsserver:/share/nfs

This tells automountd to dynamically mount the nfs share

“/share/nfs” on nfsserver when access is attempted on
the “nfs” pathname under a watched pathname (/misc for
example)

LAB

1. Configure your server to automatically mount /share as

an NFS share from server1 to /server1/share when a
process changes directories there.

EXTENDED
ATTRIBUTES

Ext2 and Ext3 support attributes that affect how data can be
manipulated.

The chattr command can change these file system
attributes.

The lsattr command will list the file system attributes.

Extended attributes can only be set by the root user, unless
the user_xattr mount option is in effect.

COMMON EXTENDED
FILE ATTRIBUTES

i Immutable. The file can not be changed. By anyone.
 Period.

a Append-only. File can only be opened for appending.

Most of the others are experimental and/or esoteric.
Surprising? ;)

ACL’S

Ext3 supports access control lists, which allow for more
flexible permissions than standard file system permissions.

ACL’s can be listed with the getfacl command.

They can be modified with the setfacl command.

To use ACLs, a file system must have the acl mount option.

Use dumpe2fs -h <block device node> to see default
mount options.

ACL EXAMPLES

setfacl -m u:bob:w memo.txt

setfacl -x g:ru report.txt

setfacl -m g:ru:r another-report.txt

QUOTAS

Quotas are used to limit how many filesystem resources are
available to a user.

Inodes and space are controllable.

Hard and soft limits are available, with grace periods.

Enabling quotes is an involved process...

ENABLING QUOTAS

usrquota and grpquota options must be enabled on the filesystem
mount

Two files will be created at the root of the filesystem: aquota.user and
aquota.group

Run quotacheck -mavug

Turn on quotas by running quotaon with the mount point as argument.

Now you can use edquota to set up the quotas

See man pages: quota, repquota, edquota, quotaon,
quotacheck

LAB

1. Create a quota for the user student with:

a block soft limit of 100M and a hard limit of 150M

a soft inode limit of 30 and a hard inode limit of 100

2. Create a quota for the group gdm so that its members

collectively have:

a block soft limit of 200M and a hard limit of 300M

a soft inode limit of 50 and a hard inode limit of 200

DISK ENCRYPTION

Disk encryption is supported under Linux via the Device
Mapper functionality introduced in the 2.6 kernel.

The Device Mapper allows arbitrary device path mapping.

Disk encryption is most commonly implemented with the
dm-crypt Device Mapper module, supporting transparent
device encryption.

dm-crypt supports a simple, internal encryption specification,
as well as the more common LUKS, Linux Unified Key Setup.

LUKS

LUKS is an open standard disk encryption specification.

LUKS is a preferred standard due to it’s broad compatibility
and secure implementation.

Using cryptsetup, a LUKS encrypted device can be
created, accessed and modified.

CRYPTSETUP

To create a new LUKS encrypted device:

cryptsetup luksFormat <device>

Then, to establish access to the device:

cryptsetup luksOpen <device> <mapname>

This command will verify the password and setup a new dm-crypt
device mapper mapping of:

<device> -> dm-crypt(LUKS) -> <mapname>

Creating /dev/mapper/mapname

CRYPTSETUP

After the /dev/mapper/mapname is in place, all operations
operate on the mapper device:

mkfs -t ext4 /dev/mapper/mapname

mount /dev/mapper/mapname /crypt

To remove access to an encrypted device, unmount the
filesystem if it’s mounted, then:

cryptsetup luksClose mapname

LUKS PERSISTENCE

To make a LUKS encrypted device available at boot time, use
the /etc/crypttab file:

<mapname> <device> [keyfile] [options]

To create a keyfile:

dd if=/dev/urandom of=/etc/keyfile bs=1k count=4

cryptsetup luksAddKey <device> /etc/keyfile

LAB

1. Create a new 100M logical volume, then set up a LUKS
encrypted ext4 filesystem on the logical volume which will
be persistent across reboots.

2. Reboot your machine to verify the LUKS filesystems
prompt for the passphrase and become accessible
automatically after bootup.

3. Browse through the man pages on cryptsetup and

crypttab.

SELINUX

Every process or object has an SELinux context:

identity:role:domain/type

The SELinux policy controls:

What identities can use which roles

What roles can enter which domains

What domains can access which types

SELINUX

Adding the -Z option to several commands will show how they are
running in regards to SELinux:

ps -Z lists the process contexts

ls -Z lists the file contexts

To change the context of a file, you can use the chcon command:

chcon -R --reference=/var/www/html <file>

SELinux will log all policy violations to /var/log/audit/
audit.log as AVC (access vector cache) denials.

LABELING

The SELinux policy includes a specification for default
contexts on all common pathnames in a standard Linux
filesystem, known as the default filesystem labels.

Relabeling involves using the defaults from the policy and
applying the contexts to files. The tool for relabeling is:

restorecon [-R] <path> [path...]

restorecon can work on individual pathnames as well as
recursively apply contexts to a pathname.

CONTROLLING
SELINUX

The tool system-config-selinux can be used to configure

SELinux.

The file /etc/sysconfig/selinux can be edited.

The command getenforce will show the current SELinux mode,

and setenforce will allow you to change the mode.

To change the SELinux mode during boot, you can pass the

enforcing=0 option to the kernel in GRUB.

See also the members of the “policycoreutils” and

“setroubleshoot” packages.

LAB

1. With SELinux enforcing, configure a website to be served
from /srv

2. Don’t focus on advanced Apache settings, accomplish this in
the simplest way possible: just change the global
DocumentRoot.

3. Populate a simple index.html file. Plain text is acceptable.

4. The setroubleshoot tool is useful here. Don’t be

confused by any typos in its output.

slideshow.end();

RHCSA
BOOT CAMP

Users and Groups

USERS AND GROUPS

Users and Groups define access to the operating system through
the file permission scheme.

Root is the super user, and the only user with special permissions

Every user is a member of at least one group, which is called their
primary group. The main purpose of this primary relationship is
to define group owner of created files.

Users can have a secondary group membership in as many
groups as needed. These secondary relationships exist to
broaden a user’s access to the files on the system.

CONFIG FILES

User information is stored in two files:

/etc/passwd

/etc/shadow

Group information is stored in one file:

/etc/group

/ETC/PASSWD

List of user records, one per line, with columns separated by
colons. Format:

login:x:userid:groupid:gecos:homedir:shell

Examples:

root:x:0:0:root:/root:/bin/bash

mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash

/ETC/SHADOW

Similar colon-separated-column list of records:

login:password:password aging fields

Aging fields track dates for password resets, locks, etc

Examples:

root:pB8msP1fCbCqc:13904:0:99999:7:::

nisburgh:vRoPw6a/jQsp.:14466:0:99999:7:::

/ETC/GROUP

Same colon-separated-column list of records format

groupname:grouppassword:groupid:secondarymembers

Group passwords allow temporary management to a group,
are rarely used and not set up by default

Examples:

daemon:x:2:root,bin,daemon

apache:x:48:jack,nisburgh

MANAGEMENT

While it is possible to edit the three files directly, it’s easier
and safer to use the management commands to create,
modify and delete users and groups:

useradd, usermod, userdel

groupadd, groupmod, groupdel

USERADD

useradd: Add a new user to the system

Accepts various arguments to control the settings on the
user account. Most common is the -g option to specify the
primary group of the user, and the -G option to list
secondary group memberships. Examples:

useradd lisa

useradd -g clowns -G trouble,simpson bart

USERMOD, USERDEL

usermod: Modify a user’s settings. Example:

usermod -G detention bart

userdel: Remove a user from the system. Main option to

consider is -r, which tells userdel to remove the user’s
home and spool directories. Example:

userdel moe

GROUP COMMANDS

groupadd: Adds a new group to the system. Example:

groupadd bullies

groupmod: Mainly used to rename a group. Example:

groupmod -n mktg mkg

groupdel: Remove a group. Example:

groupdel microsoft

PASSWORDS

passwd: Change login password.

Root can change the password for any user on the system

Root can also setup password aging, allowing for timed
password resets and account disabling (or use chage)

passwd is also the preferred way to lock a user account:

passwd -l mary

PASSWORD AGING

To set the maximum lifetime for a user’s password:

passwd -x days login

When a user’s password has expired, you can set the number
of days it can remain expired before disabling the account
completely:

passwd -i days login

IMPORTANT USER
ENVIRONMENT FILES
/etc/skel default template for a newly-added user’s

 home directory

/etc/profile sets environmental variables used by all users

/etc/profile.d contains scripts specific to certain rpms

/etc/bashrc contains global aliases and system settings

~/.bashrc contains user aliases and functions

~/.bash_profile contains user environment settings and can

 be set to automatically start programs at login

LAB
1. Create a new group ‘dev’. Create a new user ‘alice’ as a member of the ‘dev’

group, with a description of “Alice from Dev” and a default shell of ‘/bin/csh’.
Use the passwd command to set a password for alice, then log in as alice and
verify her access.

2. Set a maximum password lifetime of 4 weeks for the alice account. Look at the
passwd, shadow and group files.

3. Configure the users guido, linus, and richard. Set all their passwords to
“linux”.

4. Make these users part of the ru group.

5. Configure the directory /home/linux so that each user from the ru group can
read, create, and modify files.

6. Configure the directory /home/linux/work so that each user can create and read
files, but only the file’s owner can delete.

7. Use ACL’s to allow alice, not in ru, access to the work folder.

NIS

NIS Servers can be configured to centrally manage system and account information.

These servers can share the contents of /etc/passwd, /etc/shadow, /etc/

group, and several other files among any number of clients.

To configure a client, you must install the ypbind and portmap RPMs, and then

you can run system-config-authentication.

This command will make the proper entries in:

/etc/sysconfig/network

/etc/yp.conf

/etc/nsswitch.conf

/etc/pam.d/system-auth

LAB

1. Configure your server to authenticate against

server1.example.com using NIS.

2. You should then be able to log in to your server as station# (where

is your station number) with the password: station#

3. Next, configure the automounter service to automatically mount

the user’s home directory from server1 at login

4. Finally, configure automounter to automatically do this for ANY

station# account

Hint: Search for “Wildcard Key” in man 5 autofs

LDAP

LDAP Servers can also be configured to centrally manage system and account
information. LDAP is much more secure and flexible than a default NIS
configuration, and as such is becoming much more popular.

To configure a client, you must install the nss-pam-ldapd and openldap RPMs,

and then you can run system-config-authentication.

This command will make the proper entries in:

/etc/ldap.conf

/etc/openldap/ldap.conf

/etc/nsswitch.conf

/etc/pam.d/system-auth

LAB

1. Disable NIS authentication and verify you can no longer
authenticate as station#.

2. Configure your server to authenticate against
server1.example.com using LDAP.

3. You should then be able to log in to your server as
station# (where # is your station number) with the

password: station#

slideshow.end();

RHCSA
BOOT CAMP

Kernel Features

IMPORTANT KERNEL
DIRECTORIES

/boot contains the vmlinuz and initrd
 required to boot the system

/proc virtual file system for seeing “into”
 the kernel

/PROC/*

The /proc folder contains copious amounts of information useful
for troubleshooting. Some examples:

/proc/meminfo Memory utilization breakdown

/proc/devices Mapping major numbers to drivers

/proc/dma dma channel assignments

/proc/ioports io port assignments

See the manpage for proc for more information and descriptions

/PROC/*

Also in the /proc folder is detailed information on every
process on the system.

Details on process status, environment, commandline,
and more can be obtained

Read the proc manpage - tons of information available

through /proc

SYSCTL

sysctl: Get/set kernel parameters

sysctl -w kernel.pid_max=65535

sysctl -a

sysctl -w vm.swappiness=100

Also, you can view/edit runtime values under /proc/sys

To make changes permanent, edit /etc/sysctl.conf

LAB

1. Configure your server to have an open file limit of 524288
files.

2. Configure your server to refuse any ping requests.

3. Configure your server to forward ipv4 packets.

4. Make all of these changes persistent across reboots.

SOFTWARE RAID

Software RAID can all be configured, monitored, and modified
with the mdadm command.

To create a RAID array, you can run the following command:

mdadm -C <RAID dev> -l <LEVEL> -n <# DISKS>

<partitions>

To verify the RAID array, use either of the following commands:

mdadm --detail <RAID device>

cat /proc/mdstat

LAB

1. Create a RAID-5 array on your machine consisting of:

4 partitions

each 512MiB in size

one of which should be reserved for use as a hot spare

2. Format this array with ext4 and mount it with support for
user quotas so that it will persist across reboots.

LVM

The Logical Volume Manager

Abstracts the physical hardware into logical drive spaces
which can be dynamically grown/shrunk and span
disparate physical devices

Simplifies hard drive management as it abstracts away the
details of the underlying storage devices.

Adds a small amount of overhead to the VFS layer,
slightly reducing performance.

LVM TERMINOLOGY

Physical Volume (pv) A physical volume is simply the
 partition/RAID device for the LVM space.

Physical Extent (pe) A physical extent in a chunk of disk space.
 Can be any size, but default to 4M.

Volume Group (vg) A volume group is a collection of physical
 volumes.

Logical Volume (lv) A logical volume is a grouping of physical
 extents from your physical volumes. This
 logical volume is where you can format a
 file system.

LVM BASIC IDEA

To create a space suitable for mkfs, three steps must occur:

pvcreate: Create a physical volume

vgcreate: Create a volume group on PV

lvcreate: Create a logical volume on VG

See also pvdisplay, vgdisplay, lvdisplay

PVCREATE

Easiest of the LVM tools:

pvcreate /dev/sda4

VGCREATE

In basic form, you need to provide a name:

vgcreate VolGroup00 /dev/sda4

Note that /dev/sda4 is actually a physical volume created

with pvcreate - not just a device

LVCREATE

lvcreate -n myvol -L 10G VolGroup00

Creates a new logical volume called myvol, 10 gigs in size
pulled from the VolGroup00 Volume Group.

RESIZING LV’S

vgextend <volume group name> <new PV path>

Add a new physical volume to a volume group

lvextend {-l <+extents>| -L <+size>} <lv>

Grow a logical volume

NOTE: Use the + to give the amount of additional space
added, otherwise specify the total desired size to end up
with.

RESIZING LV’S

resize2fs <logical volume>

Once the lv has been extended, you will need to extend the file
system

You can grow the file system while it is mounted, but before
shrinking it must first be unmounted.

lvresize -r {-l <+extents>| -L <+size>} <lv>

Resizes logical volume and filesystem at same time!

Be careful if it fails, though!

LAB

1. Add logical volume management on top of a new partition.

2. Use half the available space for a logical volume formatted with
ext4 and mounted persistently across reboots.

3. Take a snapshot of this logical volume and check the file system for
errors.

4. Assuming none are found, reset the counter for days and mounts
until a check is forced on the original file system.

5. Copy some data onto the LV, then expand it and the filesystem by

50MB. fsck, then re-mount the filesystem and verify it's contents.

SWAP SPACE

Swap space allows the kernel to better manage limited system
memory by copying segments of memory onto disk

Performance gains

“Expanded” memory space

mkswap Create a new swap space for use by the
 kernel

swapon/swapoff Enable/disable a swap area

/proc/swaps Lists current swap areas

LAB

1. Add 500MB of swap space to your system using a device.

2. Add 500MB of swap space to your system using a swap
file.

slideshow.end();

RHCSA
BOOT CAMP

File Sharing Services

NFS

The Network File Service, or NFS, is used to share data with
other servers.

The command rpcinfo can be run to confirm that these
services are running on a remote server:

rpcinfo -p server1

To see the shared filesystems, use showmount:

showmount -e server1

ACCESSING NFS
SHARES

To mount an NFS share:

mount server1:/share /server1/share

NFS mounts can be made persistent across reboots by
adding the following to /etc/fstab:

server1:/share /server1/share nfs defaults 0 0

LAB

1. Mount the /share NFS share from server1, and add it

to your fstab for persistence across reboots.

VSFTPD

VSFTPd is the default ftp server

The primary configuration file is /etc/vsftpd/vsftpd.conf

Provides two levels of user access:

Anonymous: by default these users are chrooted to /var/ftp for security

User: these users authenticate with a username/password and can
download any file they can read and can upload into any directory in which
they have write access

Individual users can be denied by placing their names in:

/etc/vsftpd/ftpusers

LAB

1. Configure VSFTPd to only allow the user richard to ftp
to your server.

2. Browse through the man page on vsftpd.conf.

3. Make sure vsftpd is started at boot time.

slideshow.end();

RHCSA
BOOT CAMP

Web Services

APACHE
CONFIGURATION

The main apache configuration file is httpd.conf and is

found in /etc/httpd/conf/. This configuration file stores
the core configuration of the web server.

In Apache 2, the /etc/httpd/conf.d directory stores
configurations that are specific to a particular Apache
module. All files in this directory ending in .conf will be
parsed as a configuration file.

APACHE
CONFIGURATION

You can find this example Apache VirtualHost definition at the bottom of httpd.conf:

<VirtualHost ____________>

! ServerName name

! ServerAlias alias

! DocumentRoot path

! CustomLog /path/to/access_log combined

! ErrorLog /path/to/error_log

</VirtualHost>

The NameVirtualHost directive must be used to specify an IP that can host
multiple websites.

LAB

1. Configure two websites on your server. “X” represents your
station #.

2. wwwX.example.com should be served from /var/www/html

and should also respond to requests for the short hostname wwwX.

3. vhostX.example.com should be served from /home/linus/
html and should also respond to requests for the short hostname

vhostX.

4. Both should be listening on your primary ip address, but
wwwX.example.com should be the default site.

SECURING APACHE

Apache support access control through allow and deny directives:

allow from <host|network|ALL>

deny from <host|network|ALL>

These can be applied in the given order:

order allow,deny Allows explicitly allowed clients and

 denies everyone else. Anyone matching
 both the allow and deny are denied.

order deny,allow Denies explicitly denied clients and allows

 everyone else. Anyone matching both the
 allow and deny are allowed.

SECURING APACHE

These access control directive are applied through a per-
Directory or per-File basis.

The allow, deny and order directives are placed inside
one of the following tags:

<Directory>

<File>

LAB

1. Reconfigure your two websites such that:

wwwX.example.com is accessible to everyone except
for the person sitting to your left.

vhostX.example.com is only accessible to the person
sitting to your right.

slideshow.end();

RHCSA
BOOT CAMP

Network Security

TCP WRAPPERS

TCP Wrappers was originally written to provide host based
access control for services which did not already include it.

It was one of the first “firewalls” of a sort. :)

Before you can set up tcp_wrappers on a service, you have to
check if the service supports it...

CHECKING TCP
WRAPPER SUPPORT

Determine which binary the application runs as. Check init script or:

which sshd

/usr/sbin/sshd

Check for libwrap support in the binary.

If you see libwrap support in the output, then you can configure access

to the service with tcp_wrappers.

ldd /usr/sbin/sshd | fgrep wrap

libwrap.so.0 => /usr/lib/libwrap.so.0 (0x009c5000)

TCP WRAPPER
OPERATION

If an application is compiled with support for
tcp_wrappers, that application will check connection

attempts against the tcp_wrappers configuration files:

/etc/hosts.allow

/etc/hosts.deny

TCP WRAPPER
OPERATION

These files are parsed in the following order:

The file /etc/hosts.allow is consulted. If the

configuration of this file permits the requested connection,
the connection is immediately allowed.

The file /etc/hosts.deny is consulted. If the
configuration of this file does not permit the requested
connection, the connection is immediately refused.

If the connection is not specifically accepted or rejected in
either file, the connection is permitted.

TCP WRAPPER
CONFIGURATION

The basic syntax for these files is:

<daemon>: <client>

For example, to disable ssh connections from

192.168.2.200, add this line to /etc/hosts.deny:

sshd: 192.168.2.200

IPTABLES

IPTables works at the kernel level, just above the network
drivers, to provide several useful features.

Extremely powerful and flexible Layer 2 filtering engine.

NAT support

Port forwarding

And many more

IPTABLES RULE
MATCHING

The IPTables configuration is parsed from top to bottom.

IPTables will respond based on the first match that it finds.

If there is no specific match, the chain policy will apply.

IPTABLES TOOLS

iptables: View/modify current firewall rules

iptables-save: Script to save current firewall rules
 for use with iptables-restore

iptables-restore: Restores iptables-save format
 firewall rules - useful to set up
 firewalls at boot

Consider iptables init script for save/restore. Config file:

/etc/sysconfig/iptables

IPTABLES RULES

When creating a new rule, considerations include:

What chain should the rule apply to?

What is the traffic pattern to look for?

What should happen with the traffic?

IPTABLES CHAINS

INPUT

This chain is responsible for filtering traffic destined for the
local system.

OUTPUT

This chain is responsible for handling outbound traffic.

FORWARD

This chain is responsible for controlling traffic routed between
different interfaces.

IPTABLES RULES

Below are a few examples of possible IPTables match criteria:

incoming interface -i

protocol -p

source ip address -s

destination ip address -d

destination port --dport

IPTABLES RULES

Finally, some examples of what to do with traffic when
matched:

DROP Do not deliver, do not respond

REJECT Do not deliver, send reject notice

ACCEPT Deliver

LOG Just log the packet

IPTABLES RULES

So to summarize the syntax:

iptables

What chain should the rule apply to?

-A INPUT

What is the traffic pattern to look for?

-s 192.168.2.100

What should happen with the traffic?

-j REJECT

LAB

1. Using iptables, configure your web server to NOT

accept connections from the 192.168.1.0/24 network,
EXCEPT for the ip address of whomever is sitting next to
you. Work together to test the firewall settings, and
remember, web server. :)

2. Browse through the man page for iptables.

3. Use iptables to allow ssh from the classroom network
only.

slideshow.end();

RHCSA
BOOT CAMP

Virtualization

VIRTUALIZATION

RHEL 6 virtualization is accomplished via:

KVM - Kernel-based Virtualization Machine

QEMU - Processor emulator

RHEL 6 only supports virtualization via KVM/QEMU, and
only on 64bit systems supporting virtualization extensions

Intel: Intel VT (flag: vmx)

AMD: AMD-V (flag: svm)

PACKAGES

There are four package groups available to install the
necessary and ancillary software to support virtualization.

Virtualization

Virtualization Client

Virtualization Platform

Virtualization Tools

LIBVIRT

libvirt is the management framework used in RHEL 6

virtualization.

The libvirtd daemon will always be running in the
background to handle virtualization needs and management
requests such as starting, stopping, installing, etc.

Interface to libvirt is provided by:

virsh - command line client

virt-manager - GUI client

SCHEDULE FOR
TOMORROW

Exam starts at 9:00am SHARP

Exam concludes at 11:30am.

Lunch from 11:30am to 1:00pm

Review exam on projector from 1:00pm until finished

Final Q/A session

Survey Monkey!

DEMONSTRATION

A demonstration of basic virtualization tasks...

LAB

1. Create a VM on your machine using the RHEL 6 i386
sources available on server1.

2. Make sure the guest starts on host reboot.

slideshow.end();

RHCE
BOOT CAMP

System Administration

NAT CONFIGURATION

NAT Configuration, eth0 outside, eth1 inside:

sysctl -w net.ipv4.ip_forward=1 >> /etc/sysctl.conf

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

iptables -A FORWARD -i eth0 -o eth1 -m state --state
RELATED,ESTABLISHED -j ACCEPT

iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

service iptables save

STATIC ROUTES

Static routes are configured via:

/etc/sysconfig/network-scripts/route-eth0

192.168.0.0/24 via 192.168.0.1 dev eth0

/etc/sysconfig/network-scripts/route-eth1

10.10.10.0/24 via 10.10.10.1 dev eth1

SHELL SCRIPTING

Shell scripting involves placing a series of shell commands in a
file for later re-use.

Simple shell scripts simply run command after command,
as if the user typed them in at the command line

More complex shell scripts actually make decisions about
what commands need to be run, and might even repeat
certain sequences to accomplish some task

Scripts start executing at the top and stop when there are no
more commands to execute or when exit is called.

EXAMPLE SHELL
SCRIPT

Here is an example of a very simple shell script:

echo “Hello, what is your name?”
read NAME
echo “Hello $NAME, it’s nice to meet you!”
echo -n “The current time is: “
date

Using the echo command, this script asks a question.

The read command accepts input from the user and stores
it in the environment variable NAME

The script finishes up with a couple more echo statements,
greeting the user and announcing today’s date

SHELL SCRIPTING

If we put the example in a file called myscript, we can
execute the script as:

bash myscript

bash will open myscript and execute each line as if the
user had typed it in manually.

[root@localhost ~]# bash myscript
Hello, what is your name?
Linus
Hello Linus, it’s nice to meet you!
The current time is: Sun Nov 29 09:39:33 CST 2009
[root@localhost ~]#

INTERPRETERS

In the previous example, we put five commands in a regular
file and fed the filename to bash on the command line,
which in turn executed the commands.

Running in this way, bash operated as an interpreter.

Reading each line of the file, bash would interpret the
words and perform some action.

There are many interpreted languages available for
scripting, including all shells, python, ruby, perl, etc.

EXECUTING SCRIPTS

To run a script, feed the file to the appropriate interpreter:

bash mybashscript

perl myperlscript

This works fine, but sometimes it’s more user-friendly to allow the
script to be run directly, removing the need for an external call to
the interpreter...

./mybashscript

myperlscript

SHEBANG

This is accomplished with the shebang (#!). Also known as
a hash bang, pound bang or hashpling.

When the kernel is asked to execute a file, it must either be
machine code, or a file that starts with the shebang
sequence. If the first two characters of the file are a hash
mark and an exclamation mark, the rest of the line is
expected to be an absolute pathname for an interpreter,
which will then be invoked to “run” the file as a script.

SHEBANG

So, add an appropriate shebang to the example:

#!/bin/bash
echo “Hello, what is your name?”
read NAME
echo “Hello $NAME, it’s nice to meet you!”
echo -n “The current time is: “
date

[root@localhost ~]# chmod 755 myscript
[root@localhost ~]# ./myscript
Hello, what is your name?
Linus
Hello Linus, it’s nice to meet you!
The current time is: Sun Nov 29 09:39:33 CST 2009
[root@localhost ~]#

Then add execute permissions and the script can be run
directly:

DECISIONS

More advanced problems require the script to make
decisions. There are two basic ways to make decisions with
shell scripts:

if statements

case statements

TEST COMMAND

Before we continue talking about decisions, we need to talk
about the test command. This command actually performs
the comparisons necessary to ask a question, such as:

“string1” = “string2” Returns true if string1 is
identical to string2

VAR -le 45 Returns true if VAR is numerically less
than or equal to 45

See the man page for test for additional details

IF STATEMENTS

Basic syntax:

if list;

then list;

[elif list; then list;]

...

[else list;]

fi

IF EXAMPLE

This script will now base it’s response based on what name
the user provides

#!/bin/bash
echo “Hello, what is your name?”
read NAME
if [“$NAME” = “Linus”]
then
 echo “Greetings, Creator!”
elif [“$NAME” = “Bill”]
then
 echo “Take your M$ elsewhere!”
 exit
else
 echo “Hello $NAME, it’s nice to meet you!”
fi
echo -n “The current time is: “
date

CASE STATEMENTS

Basic syntax:

case word in

pattern [| pattern]) list;;

...

esac

CASE EXAMPLE

This script also bases it’s response based on what name the
user provides, but does so using a case statement instead of
a large if statement

#!/bin/bash
echo “Hello, what is your name?”
read NAME
case $NAME in
 “Linus”)
 echo “Greetings, Creator!”
 ;;
 “Bill”)
 echo “Take your M$ elsewhere!”
 exit
 ;;
 *)
 echo “Hello $NAME, it’s nice to meet you!”
esac
echo -n “The current time is: “
date

LOOPING

Sometimes a certain sequence of commands need to be run
repeatedly, either for a set number of times or while some
condition is true. This is accomplished with:

while loops

for loops

WHILE LOOPS

Basic syntax:

while list;

do list;

done

WHILE EXAMPLE

This script will loop until the name typed is “Linus”

#!/bin/bash
echo “Hello, what is your name?”
read NAME
while [“$NAME” != “Linus”]
do
 echo “I don’t know that person, what is your name?”
 read NAME
done
echo “Greetings, Creator!”
echo -n “The current time is: “
date

FOR LOOPS

Basic syntax:

for ((expr1 ; expr2 ; expr3))

do list;

done

FOR EXAMPLE

This excitable script repeats your name 3 times before giving
you the date and time

#!/bin/bash
echo “Hello, what is your name?”
read NAME
for ((I=0 ; I<3 ; I++))
do
 echo “Hello $NAME!!”
done
echo -n “The current time is: “
date

SCRIPTING

There is of course quite a bit more to shell scripting than can
be covered in this course. There are a few more structures
you can use for looping, and dozens of special
metacharacters for achieving all kinds of results.

With this introduction, though, you should be able to read
through light shell scripts and have a handle on what’s going
on, as well as be able to write simple ones on your own.

EXERCISES

Write a simple shell script that prints out the message “Hello world.”
Make the script executable and verify it works correctly by running it
as “./myscript”

Browse through the man page on ‘bash’, focusing in a bit on the
various scripting elements.

slideshow.end();

RHCE
BOOT CAMP

PAM, Kerberos and Software
RAID

PAM

Applications which are compiled against libpam.so may use PAM’s modules to

customize how individual applications verify their users. Each application has its own
configuration file in /etc/pam.d

The first field of the configuration file indicates how the module will be used:

Authentication management (auth) Establishes the identity of a user.

Account management (account) Allows or denies access to the
 account.

Password management (password) Enforces password management
 policies.

Session management (session) Starts, stops, and records each
 session.

PAM

The second field of the configuration file indicates the effect that the
module will have on the application:

Required If this module fails, access will not be granted,
 but all other modules will still be run.

Requisite If this module fails, access will not be granted
 and no other modules will be run.

Sufficient If this module succeeds, access will be granted
 and no other modules will be run.

Optional The result of this module is ignored.

PAM

The third field of the configuration file indicates the name of
the actual PAM module to be used for the config line in
question.

Side note:

The config file system-auth is a collection of many PAM
modules commonly used by many authentication services.
You will see it included by many of the other
configuration files. Do not modify this file directly.

PAM

pam_unix Authenticates users by UNIX password

pam_securetty Only allows root to log in from secure terminals
 listed in /etc/securetty

pam_nologin Will not allow any non-root user to login if
 /etc/nologin exists

pam_time Can be configured to allow/deny access based on
 the system time

Helpful PAM documentation can be found in:

/usr/share/doc/pam-<version>

LAB

1. Using PAM, prevent “guido” from being able to login on

Virtual Console 2. Guido should still be able to login
elsewhere.

Hint: Configure the pam_access module.

2. Set up the pam_time module to restrict linus so he can
only login between 8am and 5pm Monday through Friday,
and block out all non-root users from logging in midnight
to 2am Sundays for a maintenance period.

KERBEROS

Kerberos is a secure authentication method which never needs
to send passwords over the network, except in the case of
changing a password, which is handled with strong encryption.

All that is needed for a client to set up Kerberos authentication
is:

Realm

KDC - Key Distribution Center

Admin Server (often same server as KDC)

LAB

1. Disable NIS authentication and verify you can no longer
authenticate as station#.

2. Configure your server to authenticate against
server1.example.com using LDAP and Kerberos
passwords. KDC/Admin server: server1.example.com,
realm: EXAMPLE.COM

3. You should then be able to log in to your server as
station# (where # is your station number) with the

password: station#

SOFTWARE RAID

Software RAID can all be configured, monitored, and modified
with the mdadm command.

To create a RAID array, you can run the following command:

mdadm -C <RAID dev> -l <LEVEL> -n <# DISKS>

<partitions>

To verify the RAID array, use either of the following commands:

mdadm --detail <RAID device>

cat /proc/mdstat

LAB

1. Create a RAID-5 array on your machine consisting of:

4 partitions

each 512MiB in size

one of which should be reserved for use as a hot spare

2. Format this array with ext4 and mount it with support for
user quotas so that it will persist across reboots.

slideshow.end();

RHCE
BOOT CAMP

File Sharing Services

NFS

The Network File Service, or NFS, is used to share data with
other servers.

For this service to work properly, portmap and nfs-utils

rpms must be installed, and portmap and nfs must be running.

The command rpcinfo can be run to confirm that these

services are running on a remote server:

rpcinfo -p server1

The directories to be shared are listed in /etc/exports

/ETC/EXPORTS

The directories to be shared are listed in /etc/exports

/etc/exports should be configured as follows:

<shared directory> <who>(<how>)

Note the lack of space between the who and the parenthesis
for how. Be very careful about this!

Example:

/to/be/shared!! station*.example.com(rw)

EXPORTS NETWORK
SPECIFICATIONS

The host/network to be shared to can be specified in a number of
convenient ways:

Host Just a single host (given by name/ip)

Netgroup NIS netgroup, expressed as @group

Wildcards Using the asterisk, match based off hostnames

 plus wildcards, as *.example.com

IP Networks Specify with IP/netmask or CIDR notation:

 192.168.1.0/24

! ! ! ! ! 192.168.1.0/255.255.255.0

EXPORTFS

exportfs –r refreshes the server share list

exportfs –a exports all shares in /etc/exports

exportfs –u un-exports a share name

showmount -e server1 shows shares on server1

NFS PERSISTENCE

NFS mounts can be made persistent across reboots by
adding the following to /etc/fstab:

server1:/share /server1/share nfs defaults 0 0

LAB

1. Create a new user.

2. Configure your anonymous NFS user to use this new UID.

3. Grant read/write access to a directory this user owns to
our class network, except for server1, who should get read-
only access. (Bonus: Does the user name matter?)

4. Mount the NFS share from your neighbour, and add it to
their fstab.

SAMBA

SAMBA is an open source implementation of Windows
networking protocols. With SAMBA, it is possible to:

Provide file and print services for various Microsoft
Windows clients

Integrate with a Windows Server domain as a Primary
Domain Controller (PDC) or as a Domain Member.

Be part of an Active Directory domain.

SAMBA

SAMBA provides the following services in Linux:

Authentication and authorization of users (Active
Directory)

File and printer sharing

Name resolution

Browsing (Wins or NetBios)

GETTING SAMBA
GOING

Some packages what should be installed for SAMBA to work as
desired:

samba provides basic software for sharing
 files and printers

samba-client allows server to connect to windows
 shares (also includes the smbclient
 command, which functions like a
 command-line ftp client)

samba-common contains samba configuration files

GETTING SAMBA
GOING

For SAMBA to work properly, the following services must be
running:

smbd (SMB/CIFS Server) for authentication and
authorization and file and printer sharing

nmbd (NetBIOS name server) for resource browsing and
possibly as a wins server

CONFIGURING SAMBA

The main configuration file for SAMBA is:

/etc/samba/smb.conf

This file is very well commented and has examples for just
about anything that you need to do.

Once you have made a configuration change, you can test it
with the testparm command.

SAMBA USERS

To have a SAMBA user, that user must first be created in /

etc/passwd

The command smbpasswd -a can then be used to add a

user to /etc/samba/smbpasswd for SAMBA
authentication.

SAMBA SHARES

To see the SAMBA shares a user has access to, you use smbclient as follows:

smbclient -L <server> -U <user>%<passwd>

To mount a share, you use the UNC path:

mount.cifs //server/share /mount/point -o username=<user>

To configure this mount to happen at boot, add the following to fstab:

//server/share /mount/point cifs credentials=/etc/samba/

pub.cred 0 0

(where /etc/samba/pub.cred is a file that only root can read which contains

usernames and passwords)

LAB

1. Configure SAMBA to share your /srv directory only to
one neighbor who must log in with the SAMBA username
of richard.

2. Make this share read-only for the SAMBA user guido.

3. Mount the share from your neighbor. Configure it to
mount automatically at boot time. Use a credentials file to
store the account information securely.

slideshow.end();

RHCE
BOOT CAMP

CGI Scripting and Squid

CGI SCRIPTING

Scripting involves making Apache execute a file and return it’s
output, as opposed to simply returning the file itself.

There is an entire framework for facilitating this operation, and
allowing the webserver to communicate basic information to
script through the use of environment variables, and sometimes
input.

This is known as CGI scripting, or Common Gateway Interface
scripting.

BASIC SCRIPTING

Some of the simplest scripting requires only a shell script.
Consider:

#!/bin/bash

echo -e “Content-type: text/html\n”

echo “<h1>Hello world!</h1>”

BASIC SCRIPTING

If we put the appropriate execute permissions on the script, then
we can see it output the expected content at the command line:

chmod +x myscript

./myscript

Content-type: text/html

<h1>Hello world!</h1>

BASIC SCRIPTING

If this file is placed in a location identified to Apache as
supporting executables (CGI scripts), then we have a working
CGI!

LAB

1. Install httpd-manual if you have not already done so.

2. Look up the ScriptAlias directive in the manual.

3. Use this directive and your simple shell script to create a
simple, dynamic webpage. Maybe have it report the
current date and time with the date command.

SQUID

Squid is designed to cache internet objects and can act as a
proxy server for HTTP, FTP, and many other types of
requests.

Squid is highly flexible and powerful, but for the RHCE exam,
you only need to demonstrate the ability to set it up and proxy
web services, possibly denying access to a given subnet.

The configuration file for Squid is

/etc/squid/squid.conf

KEY SQUID SETTINGS

http_port 3128 by default

visible_hostname the hostname Squid broadcasts

KEY SQUID SETTINGS

Access control in squid is handled via ACL definitions
coupled with access definitions, as:

acl mynet src 192.168.0.0/255.255.255.0

acl yournet src 192.168.1.0/255.255.255.0

http_access allow mynet

http_access deny yournet

LAB

1. Configure your server to offer Squid proxy service to the
person sitting on your right, but not to the person sitting
on your left.

2. This service should listen on port 8080.

slideshow.end();

RHCE
BOOT CAMP

Network Services

OPENSSH

OpenSSH is the open source version of SSH, and is used by
most UNIX variants for secure remote administration.

This service is configured in /etc/ssh/sshd_config.

OPENSSH
CONFIGURATION

OpenSSH Configuration Parameters of interest:

Port

ListenAddress

PermitRootLogin

PubkeyAuthentication

Subsystem sftp

XINETD

xinetd is the extended internet services SUPER daemon. :)

This service acts as a super daemon by listening on key ports
for certain types of requests.

When a request is received, xinetd starts the appropriate
service and then hands of the request so that it can be
handled correctly.

xinetd is configured in /etc/xinetd.conf, the services

that it controls are configured in /etc/xinetd.d/

LAB

1. Configure your box to allow both the 'root' and 'student'
users to login locally, but not over ssh.

2. Configure an anonymous rsync service to share the
contents of your /srv directory. See the man page for

rsyncd.conf.

NTP

The Network Time Protocol is a very useful and accurate
method to keep your system clock synchronized with time
servers around the world. This is important because:

Timestamps in log files across machine will line up,
allowing for proper analysis and comparison

Cron jobs run at the right time

Knowing the correct time just makes for a happy server

LAB

1. Enable NTP on your machine, and use 0.pool.ntp.org

and 1.pool.ntp.org.

2. Use the ntpq command to figure out how far off your
machine's clock is from true time.

slideshow.end();

RHCE
BOOT CAMP

BIND

CONFIG FILES

BIND basically has two types of configuration files:

BIND configuration file, specific to BIND and it’s features

Database files, or zone files, which contain DNS resource
records used to describe all of the DNS information
needed in a domain

Next, a discussion of resource records and the six most
common ones: SOA, NS, A, CNAME, PTR, MX

RESOURCE RECORDS

A resource record contains the DNS information about a
domain.

There are several types of resource records, including
address records (A), mail exchangers (MX) and name
servers (NS).

Every domain has at least 2 resource records, an SOA and an
NS. But that wouldn’t be a very useful domain, so there are
usually quite a few more records, defining addresses, mail
exchangers, canonical names and more.

SOA

Start Of Authority: This resource record defines authority
for a zone.

domain IN SOA nameserver adminemail (
serial

refresh

retry

expire

negativettl

)

We’ll discuss these later!

SOA EXAMPLE

rackspace.com. IN SOA ns1.rackspace.com. dnsadmin.rackspace.com. (
2009123004 ; Serial number
3h ; Refresh interval
1h ; Retry interval
1w ; Expires
1h ; Negative TTL

)

NS

Name Server: Defines authoritative nameservers for the
zone.

zone IN NS nameserver

Example:

rackspace.com. IN NS ns1.rackspace.com.

A

Address: Maps hostnames to IP addresses

hostname IN A ipaddress

Example:

ns1.rackspace.com. IN A 192.168.1.5

CNAME

Canonical Name: Maps alias hostnames to their canonical
counterparts.

aliashostname IN CNAME canonicalhostname

Example:

ns.rackspace.com. IN CNAME ns1.rackspace.com.

CANONICAL?

In layman terms, canonical is another way of saying “real”,
“absolute” or “official”.

So a canonical name refers to the “official” name for a host.

Creating an alias for a host means that you have to decide on
the canonical name, which would be some A record.

When a resolver performs an A query on a CNAME, the
nameserver looks up the canonical name to find out the
address to return.

WHY NOT JUST USE A?

There are basically two reasons to use CNAME records
instead of just lots of A records.

First, ease of maintenance. If you need 10 names for one
machine, defining them with CNAME is easiest if you
then need to change the IP address of the machine. Only
one change instead of 11.

Second, canonicalization. Some services, most notably
sendmail, will convert all aliases into their canonical
names. This simplifies mail configuration.

PTR

Pointer: Maps an IP address back to a name, specifically the
canonical name.

ipaddressdomain IN PTR canonicalhostname

Example:

5.1.168.192.in-addr.arpa. IN PTR ns1.rackspace.com.

PTR

Remember, there is only one PTR record for a given IP
address, and it should always point to the canonical
hostname.

Also, as a side note, make sure your mail servers map both
directions exactly. This is important for proper
authentication:

mailer.mydomain.com. -> 192.168.1.50

50.1.168.192.in-addr.arpa. -> mailer.mydomain.com

MX

Mail Exchanger: Defines hosts responsible for incoming
email for the named zones.

zone IN MX preference mailhandler

Example:

rackspace.com. IN MX 10 mail1.rackspace.com.

MX RECORDS

MX records allow for enhanced mail routing functionality.

When an email is shipped out, the server canonicalizes the
delivery address. So, for example, bob@ns.rackspace.com
becomes bob@ns1.rackspace.com.

Then the server looks up the MX records for
ns1.rackspace.com, choosing the record with the lowest
preference and attempting delivery there. If delivery fails, the
next lowest is attempted.

This allows for backup email servers!

PUTTING IT ALL
TOGETHER

$TTL 1h
rackspace.com. IN SOA ns1.rackspace.com. dnsadmin.rackspace.com. (

2009123004 ; Serial number
3h ; Refresh interval
1h ; Retry interval
1w ; Expires
1h ; Negative TTL

)

rackspace.com. IN NS ns1.rackspace.com.
ns1.rackspace.com. IN A 192.168.1.5
mail1.rackspace.com. IN A 192.168.1.20
ns.rackspace.com. IN CNAME ns1.rackspace.com.
rackspace.com. IN MX 10 mail1.rackspace.com.

db.rackspace.com:

TOGETHER...

$TTL 1h
1.168.192.in-addr.arpa. IN SOA ns1.rackspace.com. dnsadmin.rackspace.com. (

2009123004 ; Serial number
3h ; Refresh interval
1h ; Retry interval
1w ; Expires
1h ; Negative TTL

)

1.168.192.in-addr.arpa. IN NS ns1.rackspace.com.
5.1.168.192.in-addr.arpa. IN PTR ns1.rackspace.com.
20.1.168.192.in-addr.arpa. IN PTR mail1.rackspace.com.

db.192.168.1:

SO WHAT ELSE?

In addition to the zone files for your domains, you need a
couple more zone files to get BIND up and running.

Loopback address

Root hints

LOOPBACK ADDRESS?

Someone has to take responsibility for loopback address
requests! It’s simple enough. db.127.0.0:

$TTL 1w
0.0.127.in-addr.arpa. IN SOA ns1.rackspace.com. dnsadmin.rackspace.com. (
 2009123004 ; Serial number
 3h ; Refresh interval
 1h ; Retry interval
 1w ; Expires
 1h ; Negative TTL
)

0.0.127.in-addr.arpa. IN NS ns1.rackspace.com.
1.0.0.127.in-addr.arpa. IN PTR localhost.

ROOT HINTS!

The root hints tell the nameserver where those DNS Root
Servers are located, so that requests for hosts outside of your
authoritative zones can be resolved.

This one is the simplest to put together. You don’t even have
to write it!

Simply ftp the db.cache file from ftp.rs.internic.net/domain

WHEW

Finally. All of the zone files are put together and ready.
Final step? Configuring BIND.

The config file is generally /var/named/chroot/etc/
named.conf

NAMED.CONF
GENERAL
acl “clients” { 192.168.0.0/24;};

acl “servers” { 192.168.1.2; 192.168.1.3;};

options {

! directory “/var/named”;

! forwarders { 192.168.0.254 ;};

! allow-query { clients; };

! allow-transfer { servers; };

};

NAMED.CONF ZONES

zone “example.com” IN {

! type master;

! file “example.com.zone”;

};

zone “example.com” IN {

! type slave;

! file “slave.example.com.zone”;

! masters { 192.168.2.254; };

};

LAB
1. Configure your machine to act as the authoritative nameserver for a

“demoX.example.com” domain and a “rhceX.example.com” domain, where X is
your station number.

2. For both domains, configure these records:

“www”, “mail”, and “ns” should all resolve to your IP address

“web” should resolve to “www”

“mail” should be listed as the primary MTA for the domain

“ns” should be listed as the DNS server for the domain

3. Also configure your machine to respond to reverse DNS lookups, such that your own IP

address will resolve to “www.rhceX.example.com”

4. Set up your machine to forward any other DNS requests to server1.

slideshow.end();

RHCE
BOOT CAMP

Email Services

SENDMAIL

What is Sendmail?

Sendmail is an extremely popular mail transfer agent (MTA)
used by default on many UN*X distributions to handle the
receipt and delivery of emails.

Sendmail has been around a very long time, and still carries
some configuration thorns from previous decades

Namely, using m4 for a configuration “language”

SENDMAIL

MUA versus MTA

A mail user agent (MUA) is a program that users run to read, reply to, compose,
and dispose of email (such as Outlook, Mozilla Mail, Eudora, etc). You can have
many different MUA’s installed and running on one machine.

A mail transfer agent (MTA) is a program that delivers mail and transports it
between machines. Usually, there is only one MTA running on a machine at any
particular time.

LDA (Local Delivery Agent)

Once the MTA receives a message, it determines if the message is intended for a
local or remote recipient. If the message is intended for a remote location, the
message is then passed off to the appropriate MTA. If the message is local, it
will be passed to the LDA. The LDA on RedHat is procmail.

SENDMAIL
CONFIGURATION
/etc/mail/sendmail.cf

Main configuration file. This file is parsed at each successful start-up.

/etc/mail/sendmail.mc

Configuration changes should always be written here.

/etc/mail/local-host-names

This file contains a list of domain names that the server will handle mail for.

/etc/aliases

This file specifies redirects for one user to another address or group of
addresses.

ALTERNATIVES!

Alternatives can be used when many packages provide the same service.

The executable that the Sendmail init script invokes is really just a symbolic

link to another symlink in the /etc/alternatives directory.

For example take a look at /usr/sbin/sendmail.

In order to choose between Sendmail and postfix, we just change the symlink.

This can be done with the following commands:

alternatives –-display mta

alternatives -–config mta

alternatives –-set mta

POSTFIX

Postfix was designed from the ground up to be a replacement for Sendmail.

The Postfix group has the following goals for their product:

It should be more efficient than Sendmail.

It should be more secure than Sendmail.

It should be easier to administer than Sendmail.

It should be 100% Sendmail compatible.

To accomplish these goals, Postfix is made up of many individual programs
which each handle a particular aspect of mail transfer. These programs are

managed by a supervisory master daemon.

CONFIGURING
POSTFIX

Postfix’s configuration file is /etc/postfix/main.cf

The directives in this file can be changed manually, or postconf -e can be run to
apply them from the command line. For example, the following are the most
common of the changes that can be made:

postconf –e “myorigin = redhat.com”

postconf –e “mydestination = redhat.com mail.redhat.com”

postconf –e “my networks = 192.168.0.0/24, 127.0.0.1”

postconf –e “inet_interfaces = all”

postconf -e “relay_host = server1.example.com”

postconf -n can then be called to check your configuration for errors

DOVECOT

dovecot is the default POP/IMAP server for RHEL 5.

The configuration file is /etc/dovecot.conf

Usually, the only changes that need to be made are the
enabling of the desired protocols.

MUTT

mutt is a full-featured MUA for your terminal. You can
use it to test pop3s and imaps:

mutt -f protocol://server

LAB

1. Configure Postfix to receive mail for stationX.example.com,
and store user mailboxes in Maildir format.

2. When mail is received for ru@stationX.example.com, that

mail should be forwarded to the users richard and linus.

3. Configure dovecot to serve user Maildirs on both imap and
pop3.

4. Generate a new key and self signed certificate for use with ssl
encrypted imaps and pop3s and then enable those protocols.

5. Test your secure mail server with mutt.

slideshow.end();

RHCE
BOOT CAMP

Various Additional Topics

BUILDING RPMS

Building an RPM can be simple or difficult, depending on if
it’s done incorrectly or correctly. ;)

Fortunately, for the RHCE exam, you only need to know how
to build a simple RPM that packages one file.

Unfortunately, RPM’s were designed to build and package
software, so there are lots of extra details that need to be
removed to package a simple file.

RPM PACKAGES

Some important packages to install:

rpm Duh. ;)

rpmdevtools Very helpful

rpmlint Checks rpm’s - can be handy

GETTING STARTED

First, switch to a non-root user.

Second, run rpmdev-setuptree to build a basic directory
tree needed for rpm construction.

cd rpmbuild

Note the various folders - most important right now are
SOURCES and SPECS.

SETTING UP SOURCES

Setting up the SOURCES folder is a little involved:

cd SOURCES

mkdir rhce-1.0

echo “test” > rhce-1.0/afile

tar czf rhce-1.0.tar.gz rhce-1.0

This will create your initial “source code” tarball

SETTING UP SPEC FILE

Writing the spec file is the most difficult part.

First, cd into the SPECS folder and create a template spec
file by running:

rpmdev-newspec rhce.spec

SPEC FILES

Spec files have a peculiar syntax:

There are tags that have short values associated with
them, such as Name and Version

There are sections that are identified with a percent sign
followed by a name, such as %description and %prep

There are “macros”, which behave similarly to
environment variables: %{version} will substitute to the

version number entered in the Version tag line.

SPEC FILES

In your spec file, fill out the following areas:

Name: rhce

Version: 1.0

Summary: RPM for RHCE

Group: Documentation

License: None

URL: http://www.redhat.com

Source0: rhce-1.0.tar.gz

SPEC FILES

You do not have any requirements, so just delete the lines:

Requires

BuildRequires

For the Description, put a short, meaningful message:

RHCE Exam RPM file

SPEC FILES

Remove the %configure macro, as this just tries to call

configure for you automatically, which is not needed for our

simple rpm.

Also, remove the make lines - one is under %build, one is under

%install. Same reasoning - we don’t need make for our rpm.

Under %install, below the rm -rf, add:

mkdir -p $RPM_BUILD_ROOT

cp afile $RPM_BUILD_ROOT

SPEC FILES

Under %files, replace the %doc with:

/afile

Verify all of your spec file contents

BUILD THE RPM

Trial by fire! Build the rpm from the rpmbuild folder:

rpmbuild -ba SPECS/rhce.spec

If you spec file is good, and your SOURCES tar file, you will have a

new rpm under the RPMS folder

Verify new rpm with:

rpm -qlp RPMS/*/*.rpm

You should see the single pathname “/afile”. Install if you wish.

LAB

1. Build a simple rpm that packages a file called “I-rock-
rpms” and installs it to /.

2. Install your rpm and verify /I-rock-rpms exists.

ISCSI

iSCSI is a neat protocol which allows for the transport of
SCSI commands over standard network stacks, such as TCP/
IP.

In iSCSI parlance, a “target” is a server/device that accepts
commands and relays them to a storage system. An
“initiator” is a client which sends commands to a target.

For the RHCE exam, all you need to know is how to set up
an initiator.

ISCSI

Required package: iscsi-initiator-utils

This provides the iscsid and iscsi services. iscsid
manages the low level iSCSI communications, and iscsi
automatically logs in and out of targets.

You usually only want to start/stop iscsi, as it will take

care of iscsid.

ISCSI

Once the iSCSI package is installed, connecting to a target is super
simple:

iscsiadm -m discovery -t st -p <ip>

If any targets are discovered, they will be printed back, as:

192.168.1.100:3260,1 iqn.2011-04.com.example.server1:server1.target1

This shows a single target on server1 is available.

ISCSI

Once targets are discovered, they will be remembered. You can
see your known targets with:

iscsiadm -m node -o show

Once targets are found, start up the iscsi service:

service iscsi start

Check dmesg to verify it finds and attaches the new SCSI devices.

ISCSI

Once you identify the scsi device (/dev/sdb on our machines),
you can partition, format and roll:

fdisk /dev/sdb

mkfs /dev/sdb1

Add entry to fstab and mount!

LAB

1. Check server1 for available iSCSI targets. You should see
exactly one, and the target number will match your station
number.

2. Attach the iSCSI device, partition it, build an ext4
filesystem and set it to mount at boot to /iscsi. Don’t
forget to chkconfig iscsi on!

3. Reboot you machine and verify the iSCSI filesystem comes
up automatically.

slideshow.end();

