
RHCE
BOOT CAMP

System Administration

Monday, July 11, 2011



NAT CONFIGURATION

NAT Configuration, eth0 outside, eth1 inside:

sysctl -w net.ipv4.ip_forward=1 >> /etc/sysctl.conf

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

iptables -A FORWARD -i eth0 -o eth1 -m state --state 
RELATED,ESTABLISHED -j ACCEPT

iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

service iptables save

Monday, July 11, 2011



STATIC ROUTES

Static routes are configured via:

/etc/sysconfig/network-scripts/route-eth0

192.168.0.0/24 via 192.168.0.1 dev eth0

/etc/sysconfig/network-scripts/route-eth1

10.10.10.0/24 via 10.10.10.1 dev eth1

Monday, July 11, 2011



SHELL SCRIPTING

Shell scripting involves placing a series of shell commands in a 
file for later re-use.

Simple shell scripts simply run command after command, 
as if the user typed them in at the command line

More complex shell scripts actually make decisions about 
what commands need to be run, and might even repeat 
certain sequences to accomplish some task

Scripts start executing at the top and stop when there are no 
more commands to execute or when exit is called.

Monday, July 11, 2011



EXAMPLE SHELL 
SCRIPT

Here is an example of a very simple shell script:

echo “Hello, what is your name?”
read NAME
echo “Hello $NAME, it’s nice to meet you!”
echo -n “The current time is: “
date

Using the echo command, this script asks a question.

The read command accepts input from the user and stores 
it in the environment variable NAME

The script finishes up with a couple more echo statements, 
greeting the user and announcing today’s date

Monday, July 11, 2011



SHELL SCRIPTING

If we put the example in a file called myscript, we can 
execute the script as:

bash myscript

bash will open myscript and execute each line as if the 
user had typed it in manually.

[root@localhost ~]# bash myscript
Hello, what is your name?
Linus
Hello Linus, it’s nice to meet you!
The current time is: Sun Nov 29 09:39:33 CST 2009
[root@localhost ~]#

Monday, July 11, 2011



INTERPRETERS

In the previous example, we put five commands in a regular 
file and fed the filename to bash on the command line, 
which in turn executed the commands.

Running in this way, bash operated as an interpreter.  

Reading each line of the file, bash would interpret the 
words and perform some action.

There are many interpreted languages available for 
scripting, including all shells, python, ruby, perl, etc.

Monday, July 11, 2011



EXECUTING SCRIPTS

To run a script, feed the file to the appropriate interpreter:

bash mybashscript

perl myperlscript

This works fine, but sometimes it’s more user-friendly to allow the 
script to be run directly, removing the need for an external call to 
the interpreter...

./mybashscript

myperlscript

Monday, July 11, 2011



SHEBANG

This is accomplished with the shebang ( #! ).  Also known as 
a hash bang, pound bang or hashpling.

When the kernel is asked to execute a file, it must either be 
machine code, or a file that starts with the shebang 
sequence.  If the first two characters of the file are a hash 
mark and an exclamation mark, the rest of the line is 
expected to be an absolute pathname for an interpreter, 
which will then be invoked to “run” the file as a script.

Monday, July 11, 2011



SHEBANG

So, add an appropriate shebang to the example:

#!/bin/bash
echo “Hello, what is your name?”
read NAME
echo “Hello $NAME, it’s nice to meet you!”
echo -n “The current time is: “
date

[root@localhost ~]# chmod 755 myscript
[root@localhost ~]# ./myscript
Hello, what is your name?
Linus
Hello Linus, it’s nice to meet you!
The current time is: Sun Nov 29 09:39:33 CST 2009
[root@localhost ~]#

Then add execute permissions and the script can be run 
directly:

Monday, July 11, 2011



DECISIONS

More advanced problems require the script to make 
decisions.  There are two basic ways to make decisions with 
shell scripts:

if statements

case statements

Monday, July 11, 2011



TEST COMMAND

Before we continue talking about decisions, we need to talk 
about the test command.  This command actually performs 
the comparisons necessary to ask a question, such as:

“string1” = “string2”     Returns true if string1 is 
identical to string2

VAR -le 45     Returns true if VAR is numerically less 
than or equal to 45

See the man page for test for additional details

Monday, July 11, 2011



IF STATEMENTS

Basic syntax:

if list;

then list;

[ elif list; then list; ]

...

[ else list; ]

fi

Monday, July 11, 2011



IF EXAMPLE

This script will now base it’s response based on what name 
the user provides

#!/bin/bash
echo “Hello, what is your name?”
read NAME
if [ “$NAME” = “Linus” ]
then
  echo “Greetings, Creator!”
elif [ “$NAME” = “Bill” ]
then
  echo “Take your M$ elsewhere!”
  exit
else
  echo “Hello $NAME, it’s nice to meet you!”
fi
echo -n “The current time is: “
date

Monday, July 11, 2011



CASE STATEMENTS

Basic syntax:

case word in

pattern [| pattern] ) list;;

...

esac

Monday, July 11, 2011



CASE EXAMPLE

This script also bases it’s response based on what name the 
user provides, but does so using a case statement instead of 
a large if statement

#!/bin/bash
echo “Hello, what is your name?”
read NAME
case $NAME in
  “Linus” )
    echo “Greetings, Creator!”
    ;;
  “Bill” )
    echo “Take your M$ elsewhere!”
    exit
    ;;
  * )
    echo “Hello $NAME, it’s nice to meet you!”
esac
echo -n “The current time is: “
date

Monday, July 11, 2011



LOOPING

Sometimes a certain sequence of commands need to be run 
repeatedly, either for a set number of times or while some 
condition is true.  This is accomplished with:

while loops

for loops

Monday, July 11, 2011



WHILE LOOPS

Basic syntax:

while list;

do list;

done

Monday, July 11, 2011



WHILE EXAMPLE

This script will loop until the name typed is “Linus”

#!/bin/bash
echo “Hello, what is your name?”
read NAME
while [ “$NAME” != “Linus” ]
do
  echo “I don’t know that person, what is your name?”
  read NAME
done
echo “Greetings, Creator!”
echo -n “The current time is: “
date

Monday, July 11, 2011



FOR LOOPS

Basic syntax:

for (( expr1 ; expr2 ; expr3 ))

do list;

done

Monday, July 11, 2011



FOR EXAMPLE

This excitable script repeats your name 3 times before giving 
you the date and time

#!/bin/bash
echo “Hello, what is your name?”
read NAME
for (( I=0 ; I<3 ; I++ ))
do
  echo “Hello $NAME!!”
done
echo -n “The current time is: “
date

Monday, July 11, 2011



SCRIPTING

There is of course quite a bit more to shell scripting than can 
be covered in this course.  There are a few more structures 
you can use for looping, and dozens of special 
metacharacters for achieving all kinds of results.

With this introduction, though, you should be able to read 
through light shell scripts and have a handle on what’s going 
on, as well as be able to write simple ones on your own.

Monday, July 11, 2011



EXERCISES

Write a simple shell script that prints out the message “Hello world.”  
Make the script executable and verify it works correctly by running it 
as “./myscript”

Browse through the man page on ‘bash’, focusing in a bit on the 
various scripting elements.

Monday, July 11, 2011



slideshow.end();

Monday, July 11, 2011

keynote:/Users/nisburgh/Alamo/RHCE/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/RHCE/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Linux%20Boot%20Camp/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Linux%20Boot%20Camp/Presentations/Outline.key

