
RHCE
BOOT CAMP

System Administration

Wednesday, November 28, 12

INSTALLATION

Installing RHEL 6 is a straightforward process when
performed interactively. I expect every single person in here
can install RHEL 6 from media.

Unattended install using a Kickstart file is another matter
entirely, though.

Wednesday, November 28, 12

KICKSTART FILES

Fortunately, Kickstart files are extremely simple to understand and
create.

A Kickstart file is a flat text file which answers all of the installation
questions automatically. Therefore, logically, it contains details on:

Partitioning and filesystems

Software packages

Users, Groups, Passwords

Features, networking and more

Wednesday, November 28, 12

KICKSTART FILES

There are three primary means of creating a Kickstart file:

From scratch

From an existing Kickstart file (perhaps from a recent
install?)

Using system-config-kickstart

Wednesday, November 28, 12

LAB

1. Examine /root/anaconda-ks.cfg

2. Install and run system-config-kickstart and create
a simple kickstart file to install a basic desktop RHEL 6
machine.

Wednesday, November 28, 12

NETWORK
CONFIGURATION

There are two main approaches to configuring a machine for network
access:

Static configuration

Dynamic configuration

Static configuration uses set parameters for the configuration, which is
known by the machine and the network and never changes. Generally
used with servers.

Dynamic configuration configures network machines on the fly, where a
service on the network provides all configuration parameters to a
machine when it joins the network. Generally used with workstations.

Wednesday, November 28, 12

DYNAMIC
CONFIGURATION

Dynamic configuration is the easiest to use.

The machine just needs to set up it’s interfaces with the
DHCP protocol.

DHCP: Dynamic Host Configuration Protocol.

A lease is obtained from the DHCP server, providing all
network configuration details for the client. The lease
expires after some amount of time and is renewed by the
client to maintain network access.

Wednesday, November 28, 12

STATIC
CONFIGURATION

Static configuration requires four configuration parameters
in order to allow full network functionality:

IP Address

Netmask

Default Gateway or Router

DNS Server(s)

Wednesday, November 28, 12

DNS?

Domain Name Service: This is the glue between network
names and IP addresses.

Remember: Humans like names, computers like numbers.
DNS is a service like so many others, mapping names to
numbers and numbers to names. Mostly a convenience.

Also provides for email functionality, geographic load
balancing and limited service failover capabilities.

Wednesday, November 28, 12

STATIC
CONFIGURATION

The first two components of static configuration are IP
address and netmask.

These provide LAN-level access

To view current address:

ip addr list

Wednesday, November 28, 12

GATEWAYS

The third configuration parameter is the default gateway.

Provides access to inter-networking, or moving from just
the local LAN to other LAN’s

To see the current routing entries:

ip route show

Wednesday, November 28, 12

DNS SERVERS

Final piece of configuration information.

List of one or more IP addresses which provide the DNS
service, allowing name to IP address mapping

To view current nameservers, see:

 /etc/resolv.conf

Also consider /etc/nsswitch.conf

Wednesday, November 28, 12

STATIC
CONFIGURATION

Once all four pieces of information are configured on the
system, full network service will be available.

To test local connectivity, try pinging the gateway

To test inter-networking connectivity, try pinging 8.8.8.8
or some other external IP address.

To test name resolution, try pinging google.com or
another public DNS name.

Wednesday, November 28, 12

CHANGING
NETWORKING

To change the IP address, hostname, netmask and gateway,
you have to edit two configuration files:

/etc/sysconfig/network-scripts/ifcfg-em1

/etc/sysconfig/network

Wednesday, November 28, 12

/ETC/SYSCONFIG/NETWORK

NETWORKING={yes|no}

HOSTNAME=<fqdn>

NISDOMAIN=<nis domain name>

Wednesday, November 28, 12

IFCFG-* FILES

To configure a device to use dhcp, the ifcfg file should
contain the following:

DEVICE=em1

BOOTPROTO=dhcp

ONBOOT=yes

Wednesday, November 28, 12

IFCFG-* FILES

To configure a device with static settings, the ifcfg file should contain the following:

DEVICE=em1

BOOTPROTO=none

IPADDR=<ip>

NETMASK=<netmask> (or PREFIX=<net bits>)

ONBOOT=yes

GATEWAY=<gateway ip>

DNS1=<nameserver ip>

DOMAIN=<search domain>

Wednesday, November 28, 12

NETWORK MANAGER

In RHEL 6, Network interfaces are now handled via Network
Manager. Some notable commands/tools:

nmcli - simple CLI to Network Manager

nm-connection-editor - excellent GUI tool for
managing all network connections.

On the test, you should decide if you are going to use Network
Manager or not, and if so, only use NM and don’t edit the
config files by hand. Otherwise, disable NM and edit the files
by hand. Your choice!

Wednesday, November 28, 12

NAT CONFIGURATION

NAT Configuration, eth0 outside, eth1 inside:

sysctl -w net.ipv4.ip_forward=1 >> /etc/sysctl.conf

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

iptables -A FORWARD -i eth0 -o eth1 -m state --state
RELATED,ESTABLISHED -j ACCEPT

iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

service iptables save

Wednesday, November 28, 12

STATIC ROUTES

Static routes are configured via:

/etc/sysconfig/network-scripts/route-eth0

192.168.0.0/24 via 192.168.0.1 dev eth0

/etc/sysconfig/network-scripts/route-eth1

10.10.10.0/24 via 10.10.10.1 dev eth1

Wednesday, November 28, 12

LAB

1. Determine your current network settings (which were assigned by
DHCP) and change your machine to a static network configuration
using these settings.

2. When you are satisfied with your configuration, restart the network
service to put your changes into effect.

3. Test your connectivity to server1 to make sure you are still online.

4. Refer back to DHCP settings if necessary to correct any mistakes in
your static configuration.

5. Once complete, switch everything back to DHCP.

Wednesday, November 28, 12

CRON

crond is the cron daemon. Cron provides for the ability to
execute commands on a regular basis.

Generally used to run hourly, daily and weekly type system
maintenance scripts.

Also useful to run reports, cleanup jobs and much, much
more.

Wednesday, November 28, 12

SYSTEM CRONS
/etc/crontab and /etc/cron.d/* define the system cron jobs.

/etc/anacrontab defines system cron jobs that are run even if
the machine was not running when the job normally executes.

Many distributions use the run-parts script to execute all scripts
found in /etc/cron.hourly, /etc/cron.daily, etc on the
appropriate schedule.

/etc/anacrontab defines the times for each schedule: daily,
weekly, monthly

Due to limitations in anacrontab, the hourly scripts are
configured to run via /etc/cron.d/0hourly

Wednesday, November 28, 12

USING CRON

Cron is controlled through crontab files.

There are system-wide crons as discussed previously.

Every user has their own crontab, accessible through the
crontab command

Wednesday, November 28, 12

CRONTAB

crontab: View, edit or remove crontabs

The -l option prints the crontab. The -e option opens
the crontab for editing. The -r option removes the
crontab.

Root can work with the crontab for any user by specifying
the username on the command line:

crontab -e -u bob

Wednesday, November 28, 12

CRONTAB SYNTAX

There are two main components to a crontab entry:

The timespec specifies when the command should be run

The command is what gets executed every time the
timespec is matched

Wednesday, November 28, 12

CRONTAB TIMESPECS

The timespec is broken down into 5 fields, separated by
spaces:

minute hour day-of-month month day-of-week

Each field can contain a number, a range of numbers, a
comma-separated list of numbers, an asterisk or a number
slash division rate

Mostly self-explanatory - some examples will help...

Wednesday, November 28, 12

TIMESPEC EXAMPLES

0 23 * * * 11pm every day

30 * * * 1-5 30 minutes after every hour, M-F

0 7 1 * * 7am, first of every month

* * * * * Every single minute

0,10,20,30,40,50 * * * * Every 10 minutes

*/5 8-17 * * 1-5 Every 5 minutes, 8am-5pm, M-F

Wednesday, November 28, 12

EXAMPLE CRONTAB

There are various additional options and features available
to the cron system. Check the man pages for reference:

cron, crontab (sections 1 and 5)

01 4 * * * /usr/local/bin/restart-webserver
00 8 1 * * /usr/bin/mail-report boss@mycompany.com
*/5 * * * * /monitor/bin/check-site -e admin@mycompany.com -o /var/log/check.log

Wednesday, November 28, 12

mailto:boss@mycompany.com
mailto:boss@mycompany.com
mailto:admin@mycompany.com
mailto:admin@mycompany.com

LAB

1. Create a cronjob for the user root that checks the amount
of available space on the system every Friday at 12:34pm.

2. Create a cronjob as a regular user that lists the contents
of /tmp at 3:54am on Sunday, January 2. Hint: not
possible with just cron syntax - you will have to do a tiny
amount of scripting to complete this one.

Wednesday, November 28, 12

LOGS

One of the easiest places to find the cause of a problem is in
the log files.

Log files store informational messages from software. The
types of messages include debug information, status
information, warnings, errors and more.

Some applications manage their own log files. Others use
the system-wide logging package...

Wednesday, November 28, 12

SYSLOG

rsyslog - The system logger. A framework consisting of a
library, a daemon, a configuration file and logs.

Any application can use the library and log messages through
rsyslog with simple function calls.

Log messages consist of 3 parts:

Facility

Level

Message

Wednesday, November 28, 12

SYSLOG

The facility describes what part of the operating system
generated the message, and is selected by the software:

auth, authpriv, cron, daemon, ftp, kern, lpr,
mail, news, security, syslog, user, uucp,
local0-local7

The level represents the importance of the message, and is also
chosen by the software:

emergency, alert, critical, error, warning,
notice, info, debug

Wednesday, November 28, 12

/ETC/RSYSLOG.CONF

/etc/rsyslog.conf defines where all of the log messages should go.
Destinations include files, screens of logged in users, console, other syslog
servers. Additional configuration is available as well.

Basic rule format:

facility.level destination

Examples:

*.err /dev/console

mail.* /var/log/maillog

*.info;mail.none;authpriv.none /var/log/messages

Wednesday, November 28, 12

/VAR/LOG

maillog: messages from the email subsystem

secure: authentication and security messages

cron: cron messages

boot.log: boot messages

messages: catch-all

dmesg : hardware and kernel events generated before syslogd

Wednesday, November 28, 12

REMOTE LOGGING

Setting up remote logging with rsyslog is trivial:

Make sure a hostname is set up on each machine

Make sure server firewall has holes for port 514 udp/tcp

Wednesday, November 28, 12

REMOTE LOGGING
SERVER

On the server, add to rsyslog.conf:

$ModLoad imudp.so

$UDPServerRun 514

$ModLoad imtcp.so

$InputTCPServerRun 514

Restart rsyslogd

Wednesday, November 28, 12

REMOTE LOGGING
CLIENT

On the client, add to rsyslog.conf:

. @loghost.fqdn # for udp

. @@loghost.fqdn # for tcp

Restart rsyslogd

Consider using the Action Queue parameters to improve
reliability. See bottom of rsyslog.conf for example.

Wednesday, November 28, 12

LOGS

As mentioned earlier, not all software uses the syslog
framework to handle it’s logging. Quite a bit of software
manages it’s own logs.

This can make it difficult to track down all of the log
locations on an unfamiliar system. The best way to handle
this is to start from the init scripts...

Wednesday, November 28, 12

LOCATING
APPLICATION LOGS

To track down the log file location for an application, you need
to find it’s configuration file so you can see where the logs are
being written.

Of course, finding the configuration file might be just as
difficult, so it’s best to start at the source.

init starts all of the system services, and so there is an init
script somewhere that is starting up the application in
question.

The init script almost always references the configuration file

Wednesday, November 28, 12

LOCATING
APPLICATION LOGS

Now that the configuration file location is known, it only
takes a few moments to scan through it and find out where
logs are being written.

As for the format of the log file, that’s completely dependent
on the application. Some will be similar to syslog, others,
like Apache or Qmail, will be completely foreign looking.

Fortunately, a little common sense and judicious application
of Google Ointment will get the information you seek.

Wednesday, November 28, 12

MAINTAINING LOGS

/etc/logrotate.conf!

This is the main configuration file for logrotate.

/etc/logrotate.d/!

EVERYTHING in this directory will be parsed as if it is a logrotate
configuration file. Usually, applications such as Apache and Sendmail
will have configuration files in this directory to control how their logs
will be rotated.

logrotate -vf /etc/logrotate.conf

Can be run as root at any time to force log rotation and check for errors.

Wednesday, November 28, 12

TROUBLESHOOTING

There will be some basic troubleshooting objectives on the
exam, mostly to test basic knowledge of how permissions
should work, SELinux and locating error messages in log
files.

Mentioned here are a few useful tools to remember

Wednesday, November 28, 12

TOP

top: Self-updating tool displays combination summary at top,
followed by ordered list of processes. Fully customizable.

The summary includes uptime information, memory
breakdowns, CPU utilization and process state summaries

The process display can be customized and sorted to suit need

top - 16:39:32 up 682 days, 10:41, 2 users, load average: 0.01, 0.00, 0.00
Tasks: 118 total, 1 running, 116 sleeping, 1 stopped, 0 zombie
Cpu(s): 0.1%us, 0.0%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.1%st
Mem: 262316k total, 258024k used, 4292k free, 7380k buffers
Swap: 524280k total, 74564k used, 449716k free, 67808k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1 root 15 0 10316 648 592 S 0 0.2 0:06.24 init
 2 root RT 0 0 0 0 S 0 0.0 0:04.88 migration/0
 3 root 34 19 0 0 0 S 0 0.0 0:00.19 ksoftirqd/0

Wednesday, November 28, 12

DF

df: lists filesystem utilization

Breaks down size and use information for each mounted
filesystem

-h is useful option to display in “human-friendly” format

[root@dev1 ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 9.4G 7.2G 1.8G 81% /
none 129M 0 129M 0% /dev/shm
[root@dev1 ~]#

Wednesday, November 28, 12

LDD, LDCONFIG

ldd: List library dependencies

ldconfig: Update library location database

/etc/ld.so.conf and /etc/ld.so.conf.d/*.conf
for list of pathnames to search for libraries, creates
database for dynamic linker

[root@dev1 ~]# ldd /bin/bash
! libtermcap.so.2 => /lib64/libtermcap.so.2 (0x00002ac044572000)
! libdl.so.2 => /lib64/libdl.so.2 (0x00002ac044775000)
! libc.so.6 => /lib64/libc.so.6 (0x00002ac044979000)
! /lib64/ld-linux-x86-64.so.2 (0x00002ac044357000)
[root@dev1 ~]# cat /etc/ld.so.conf.d/mysql-x86_64.conf
/usr/lib64/mysql
[root@dev1 ~]# ldconfig
[root@dev1 ~]#

Wednesday, November 28, 12

NICE LEVEL

The nice level represents one influence on the calculations
the kernel uses when assigning priorities.

Originally designed and named to allow users to be “nice” to
other users of the system by assigning a higher nice value to
an intensive process, which in turn lowers it’s priority.

Ranges from -20 to 19. Default nice level is 0.

Only root can assign negative nice values.

See nice and renice commands

Wednesday, November 28, 12

LAB
1. Take a few minutes to browse through the various logs in /var/log.

Familiarize yourself with the kinds of information available.

2.Browse the man page for rsyslog.conf

3.Find where the audit service keeps its log and add a corresponding
new entry to your logrotate configuration. Force a rotation to see
everything work.

4.Remove the audit logrotate configuration and restart the auditd
service.

5. Locate the PIDs of the highest memory and highest CPU utilization
processes. Play with their nice levels.

6.Work with a neighbor to set up remote logging from your station to
theirs, and theirs to yours. Verify using logger. Careful of log loops!

Wednesday, November 28, 12

SHELL SCRIPTING

Shell scripting involves placing a series of shell commands in a
file for later re-use.

Simple shell scripts simply run command after command,
as if the user typed them in at the command line

More complex shell scripts actually make decisions about
what commands need to be run, and might even repeat
certain sequences to accomplish some task

Scripts start executing at the top and stop when there are no
more commands to execute or when exit is called.

Wednesday, November 28, 12

EXAMPLE SHELL
SCRIPT

Here is an example of a very simple shell script:

echo “Hello, what is your name?”
read NAME
echo “Hello $NAME, it’s nice to meet you!”
echo -n “The current time is: “
date

Using the echo command, this script asks a question.

The read command accepts input from the user and stores
it in the environment variable NAME

The script finishes up with a couple more echo statements,
greeting the user and announcing today’s date

Wednesday, November 28, 12

SHELL SCRIPTING

If we put the example in a file called myscript, we can
execute the script as:

bash myscript

bash will open myscript and execute each line as if the
user had typed it in manually.

[root@localhost ~]# bash myscript
Hello, what is your name?
Linus
Hello Linus, it’s nice to meet you!
The current time is: Sun Nov 29 09:39:33 CST 2009
[root@localhost ~]#

Wednesday, November 28, 12

INTERPRETERS

In the previous example, we put five commands in a regular
file and fed the filename to bash on the command line,
which in turn executed the commands.

Running in this way, bash operated as an interpreter.
Reading each line of the file, bash would interpret the
words and perform some action.

There are many interpreted languages available for
scripting, including all shells, python, ruby, perl, etc.

Wednesday, November 28, 12

EXECUTING SCRIPTS

To run a script, feed the file to the appropriate interpreter:

bash mybashscript

perl myperlscript

This works fine, but sometimes it’s more user-friendly to allow the
script to be run directly, removing the need for an external call to
the interpreter...

./mybashscript

myperlscript

Wednesday, November 28, 12

SHEBANG

This is accomplished with the shebang (#!). Also known as
a hash bang, pound bang or hashpling.

When the kernel is asked to execute a file, it must either be
machine code, or a file that starts with the shebang
sequence. If the first two characters of the file are a hash
mark and an exclamation mark, the rest of the line is
expected to be an absolute pathname for an interpreter,
which will then be invoked to “run” the file as a script.

Wednesday, November 28, 12

SHEBANG

So, add an appropriate shebang to the example:

#!/bin/bash
echo “Hello, what is your name?”
read NAME
echo “Hello $NAME, it’s nice to meet you!”
echo -n “The current time is: “
date

[root@localhost ~]# chmod 755 myscript
[root@localhost ~]# ./myscript
Hello, what is your name?
Linus
Hello Linus, it’s nice to meet you!
The current time is: Sun Nov 29 09:39:33 CST 2009
[root@localhost ~]#

Then add execute permissions and the script can be run
directly:

Wednesday, November 28, 12

DECISIONS

More advanced problems require the script to make
decisions. There are two basic ways to make decisions with
shell scripts:

if statements

case statements

Wednesday, November 28, 12

TEST COMMAND

Before we continue talking about decisions, we need to talk
about the test command. This command actually performs
the comparisons necessary to ask a question, such as:

“string1” = “string2” Returns true if string1 is
identical to string2

VAR -le 45 Returns true if VAR is numerically less
than or equal to 45

See the man page for test for additional details

Wednesday, November 28, 12

IF STATEMENTS

Basic syntax:

if list;

then list;

[elif list; then list;]

...

[else list;]

fi

Wednesday, November 28, 12

IF EXAMPLE

This script will now base it’s response based on what name
the user provides

#!/bin/bash
echo “Hello, what is your name?”
read NAME
if [“$NAME” = “Linus”]
then
 echo “Greetings, Creator!”
elif [“$NAME” = “Bill”]
then
 echo “Take your M$ elsewhere!”
 exit
else
 echo “Hello $NAME, it’s nice to meet you!”
fi
echo -n “The current time is: “
date

Wednesday, November 28, 12

CASE STATEMENTS

Basic syntax:

case word in

pattern [| pattern]) list;;

...

esac

Wednesday, November 28, 12

CASE EXAMPLE

This script also bases it’s response based on what name the
user provides, but does so using a case statement instead of
a large if statement

#!/bin/bash
echo “Hello, what is your name?”
read NAME
case $NAME in
 “Linus”)
 echo “Greetings, Creator!”
 ;;
 “Bill”)
 echo “Take your M$ elsewhere!”
 exit
 ;;
 *)
 echo “Hello $NAME, it’s nice to meet you!”
esac
echo -n “The current time is: “
date

Wednesday, November 28, 12

LOOPING

Sometimes a certain sequence of commands need to be run
repeatedly, either for a set number of times or while some
condition is true. This is accomplished with:

while loops

for loops

Wednesday, November 28, 12

WHILE LOOPS

Basic syntax:

while list;

do list;

done

Wednesday, November 28, 12

WHILE EXAMPLE

This script will loop until the name typed is “Linus”

#!/bin/bash
echo “Hello, what is your name?”
read NAME
while [“$NAME” != “Linus”]
do
 echo “I don’t know that person, what is your name?”
 read NAME
done
echo “Greetings, Creator!”
echo -n “The current time is: “
date

Wednesday, November 28, 12

FOR LOOPS

Basic syntax:

for ((expr1 ; expr2 ; expr3))

do list;

done

Wednesday, November 28, 12

FOR EXAMPLE

This excitable script repeats your name 3 times before giving
you the date and time

#!/bin/bash
echo “Hello, what is your name?”
read NAME
for ((I=0 ; I<3 ; I++))
do
 echo “Hello $NAME!!”
done
echo -n “The current time is: “
date

Wednesday, November 28, 12

SCRIPTING

There is of course quite a bit more to shell scripting than can
be covered in this course. There are a few more structures
you can use for looping, and dozens of special
metacharacters for achieving all kinds of results.

With this introduction, though, you should be able to read
through light shell scripts and have a handle on what’s going
on, as well as be able to write simple ones on your own.

Wednesday, November 28, 12

EXERCISES
Write a simple shell script that prints out the message “Hello world.”
Make the script executable and verify it works correctly by running it
as “./myscript”

Browse through the man page on ‘bash’, focusing in a bit on the
various scripting elements.

Devise a program which uses one or more if statements, changing
behavior based on user input or command line arguments. Output a
warning to stderr if there are no arguments passed to your script on
the command line.

Wednesday, November 28, 12

slideshow.end();

Wednesday, November 28, 12

keynote:/Users/nisburgh/Alamo/RHCE/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/RHCE/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Linux%20Boot%20Camp/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Linux%20Boot%20Camp/Presentations/Outline.key

