
INTRO TO MYSQL
in 24 hours!

Tuesday, March 15, 2011

TECH SPECS

24 hours, lecture/lab format

Hours: 8:30 - 5:00

Lunch: 11:45 - 1:00

Breaks every hour or so.. :)

Tuesday, March 15, 2011

ABOUT THE
INSTRUCTOR

Nathan Isburgh

instructor@edgecloud.com

Unix user 15+ years, teaching it 10+ years

Sysadmin, developer, geek

Forgetful, goofy, patient :)

Tuesday, March 15, 2011

mailto:instructor@edgecloud.com
mailto:instructor@edgecloud.com

ABOUT THE COLLEGE

Rackspace Parking Sticker = good to go

Breakroom downstairs - labeled “Laundry”

Sodas - bottles in machine ($1.25) or cans in mini-fridge
($0.50)

Cafeteria

Do not speed!

No smoking anywhere. Can only smoke sitting in car.

Tuesday, March 15, 2011

ABOUT THE STUDENTS

Name?

Time served, I mean employed, at Rackspace?

Department?

Unix skill level?

Why are you taking a class on MySQL and what are you
expecting from the experience?

Tuesday, March 15, 2011

EXPECTATIONS OF
STUDENTS

Basic foundation in computer use

Ask Questions!

Complete the labs

Email if you’re going to be late/miss class

Have fun

Learn something

Tuesday, March 15, 2011

slideshow.end();

Tuesday, March 15, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

MYSQL OVERVIEW
History, Architecture and more

Tuesday, March 15, 2011

MYSQL

MySQL (pronounced “My-es-que-el”) is an open source
Relational DataBase Management System (RDBMS).

Michael “Monty” Widenius was the original author of the MySQL
database system. It all started back in 1994 when his employer
needed a new database system and none of the existing options
were acceptable. For a while, MySQL was an internal product.

In 1996, MySQL 3.11.1 was released publicly in binary forms for
Linux and Solaris. Over time, MySQL moved towards a dual-
license model, with an open source GNU version and a
commercial licensing scheme as well.

Tuesday, March 15, 2011

MYSQL VERSIONS

3.23 - First major, popular release. c. 2001

4.0 - Updates and new features, including Unions. c. 2003

4.1 - R-tree, B-trees, subqueries, prepared statements. c. 2004

5.0 - Cursors, stored procedures, triggers and more. c. 2005

5.1 - Event scheduler, partitioning, plugins and more. c. 2008

5.5 - New InnoDB, enhanced tuning, better replication. c. 2010

Tuesday, March 15, 2011

MYSQL
ARCHITECTURE

MySQL follows a traditional client/server model. The server is
in charge of managing all of the data while the clients use/
update the data.

MySQL multi-processing is implemented with threads,
providing some benefits and drawbacks; notably better inter-
thread communication, but at the cost of more difficult
implementation.

There are many parts to the MySQL system, so a handy picture
yanked from the documentation will work well:

Tuesday, March 15, 2011

Tuesday, March 15, 2011

OBTAINING MYSQL

The MySQL source code is available for download from
www.mysql.com

Additionally, most distributions of Linux maintain one or more
packages for the MySQL system.

MySQL is even available to the Microsoft world! If running on
Windows, MySQL 5.5 should be strongly considered due to
massive overhaul of performance on Windows systems in that
version.

Tuesday, March 15, 2011

COMPILING

Compiling from source is an attractive option because:

Users can tweak advanced settings and features

Users can wring extra performance from the server

Compiling from source cons:

Compiling. :)

Understanding all of the options and implications to achieve
an effective database server for the user’s application.

Tuesday, March 15, 2011

COMPILING

Compiling is a multi-step, often complicated process.

Fortunately, MySQL is a very well maintained project, and the
process of building it has been finely tuned.

The short form:

./configure; make; make install

Note that as of MySQL 5.5, the build processes utilizes cmake.

In the lab, you will get to try this out

Tuesday, March 15, 2011

PRE-COMPILED

Pre-compiled software is an attractive option because:

Generally available in package form, therefore bringing all of the
benefits of packaged software (dependencies, tracking, upgrades,
management)

Do not need up front knowledge on MySQL compile time options
and settings

The only real drawbacks to pre-compiled software are:

Often not compiled to target user’s specific hardware

No control over compile time configuration options and features

Tuesday, March 15, 2011

PACKAGES

Installing a package is very simple on most distributions of
linux:

yum install mysql

apt-get install mysql

Windows users just download the installer and run it.

Tuesday, March 15, 2011

1) Experienced Linux users: download the latest source code
for MySQL from www.mysql.com. Extract and compile
the software, but do not install it. Windows users, watch a
nearby Linux user while they do this.

2) Everyone: install the mysql packages. This includes at
least packages mysql and mysql-server.

LAB

Tuesday, March 15, 2011

slideshow.end();

Tuesday, March 15, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

RDBMS BASICS
Tables, rows, databases, oh my!

Tuesday, March 15, 2011

DATA RELATIONSHIPS

Why does everyone always talk about data relationships and
relational databases? What’s all this relationship business?

Easy! Most information that humans care about is related
somehow. One piece of information logically ties to another.
Consider:

Accounting systems: accounts, transactions, customers

Recipes: ingredients, processes, categories

Movie collections: Titles, genres, actors, ratings

Tuesday, March 15, 2011

SO?

Most requirements to store data can do so by expressing the
various entities of information and then expressing the
relationships between them. For example:

For a given Movie, there will be:

A Title

One or more Genres

One or more Actors

etc...

Tuesday, March 15, 2011

RDBMS’S

RDBMS’s were developed decades ago to manage the
underlying storage and organization for all of the
information bits and their relationships. Some major
examples include:

MySQL, Oracle, Postgresql, mSQL, SQLServer

There is even a special language that was invented to interact
with relational databases, known as the Structured Query
Language, or SQL. Most RDBMS’s implement some form of
SQL. Further discussion of SQL to occur in a later lecture.

Tuesday, March 15, 2011

VOCABULARY TIME!

Database: Highest level container. Holds zero or more
tables, views, stored procedures, etc. “Movie Collection”

Table: Primary data storage container. Holds zero or more
rows of information, each row representing one collection of
data bits and relationships. “Titles”

Row: Individual chunk of data, comprised of one or more
columns of information. “id: 2600, title: Hackers”

Column: One tiny part of data in a row. “Hackers”

Tuesday, March 15, 2011

WHITEBOARD TIME

Let’s draw some of this out on the whiteboard to get a better
idea of what’s going on, how relationships are commonly
expressed, and how data is stored.

We will also start sketching out a rough idea for how to
organize a movie collection database.

Tuesday, March 15, 2011

1) In your own words, define what a table is and it’s
relationship with columns and rows.

2) On a sheet of paper, and using the sample movie
collection database design as a guide, design a simple
book collection database, trying to follow some of the
ideas discussed in lecture for data reuse and proper
organization.

LAB

Tuesday, March 15, 2011

slideshow.end();

Tuesday, March 15, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

MYSQL BASICS
mysql or mysqld?

Tuesday, March 15, 2011

MYSQL COMPONENTS

MySQL is comprised of several components:

mysqld: The server process, providing most of the
functionality expected from an RDBMS.

mysql: Important command line interface client,
connecting to MySQL servers locally or remotely.

Libraries/Connectors: There are several MySQL libraries
which can be used by developers to connect custom source
code to the MySQL system, allowing full access to databases
managed by a local or remote mysqld.

Tuesday, March 15, 2011

COMMAND LINE
UTILITIES
mysql: Important command line interface client, connecting

to MySQL servers locally or remotely.

mysqladmin: Administration tool

mysqldump: Backup tool

mysqlcheck: Table maintenance and repair tool

myisamchk: MyISAM maintenance tool

mysqlshow: View databases, tables and column information

Tuesday, March 15, 2011

SERVER CONTROL

Shutting down a database properly is one of the most
important steps in avoiding corruption. Consider:

Open files, database caches, ongoing transactions,
operating system caches, hardware caches

If the database is not given a chance to flush out caches, write
out log messages and close out all operations, any number of
nasty corruption issues can spring up.

Exercising proper startup and shutdown procedures is a must:

Tuesday, March 15, 2011

SERVER CONTROL

On Linux systems, a control script should have been included in
the package:

/etc/init.d/mysqld

To start up or shut down the database, simply run this script with
an argument of “start” or “stop”

Additionally, the mysqladmin command can be used by a properly
privileged user to shutdown the database.

In dire cases, sending SIGTERM to mysqld will also provide MySQL
with notice and the time to shut down cleanly.

Tuesday, March 15, 2011

CONNECTING TO
MYSQL

In a later lecture, we will discuss users and access control
within MySQL. For the time being, we will be logging in to
MySQL with the default root account.

To attach to the MySQL database, simply run:

mysql -p -u root

This tells the mysql command line client to connect to the
locally running mysqld process as the root user (-u), and

prompt for the password (-p).

Tuesday, March 15, 2011

SENDING A QUERY

Once a connection is established to the server, queries can
be sent in for processing. Examples:

SELECT NOW();

SHOW DATABASES;

SELECT USER()\G

Tuesday, March 15, 2011

1) Start up your database, connect as root and try out the
examples mentioned previously. What is the difference
between ending a query with a semicolon or backslash G?

2) Try running “\h” or “\?”. Figure out how to exit from the

mysql client, then shutdown your database. Verify you can no

longer connect via the mysql client. Read the documentation

for mysqladmin, then run “mysqladmin ping” and verify
your server is shut down.

3) Start up your database once more and check that it’s running
both with mysql and mysqladmin.

LAB

Tuesday, March 15, 2011

slideshow.end();

Tuesday, March 15, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

SQL BASICS
SELECT * FROM movie;

Tuesday, March 15, 2011

SQL

The Structured Query Language is a powerful tool for
interfacing with RDBMS’s.

SQL is not the most straightforward language, though, as the
syntax is strict, and the wording a little foreign for first time
users.

We will explore SQL by using it to create the Movie database
designed earlier, then add and manage some records within
the new database.

Tuesday, March 15, 2011

CREATE

The first command to cover is the CREATE statement.

CREATE can be used to create a number of different RDBMS
entities. A few examples:

CREATE DATABASE

CREATE TABLE

CREATE VIEW

CREATE INDEX

Tuesday, March 15, 2011

CREATE

We first need to create a database container for our Movie
Collection project:

CREATE DATABASE MovieCollection;

The name is case sensitive, so we shall use capital letters to
denote each word.

Database naming is a personal or organizational policy
decision. MySQL truly does not care what the name is, so long
as it follows the rules laid out in the documentation “Schema
Object Names”. Speaking of...

Tuesday, March 15, 2011

DOCUMENTATION!
AND LAB!

Now is a good time to learn about the vast and excellent
documentation available for the MySQL system.

http://dev.mysql.com/doc

Learn it, Live it, Love it

Take some time now to peruse the documentation and familiarize
yourself with the layout of the site. Maybe read up on the mysql

or mysqladmin command.

Find the section on Schema Object Names and browse through it.

Tuesday, March 15, 2011

USING A DATABASE

Now that the MovieCollection database has been created, we
need to let the mysql client know that is the database we want to

work on. This is done with the mysql client “use” command.

But first, let’s see what database we’re currently using:

SELECT DATABASE();

Null? That’s not what we want...

use MovieCollection;

SELECT DATABASE();

Tuesday, March 15, 2011

CREATE TABLE

With a working database, we’re ready to create our tables.

Creating tables involves naming the table and describing the
various column names and types. Generic syntax:

CREATE TABLE table_name (

! column_name column_type_and_parameters,

! ...

)

Tuesday, March 15, 2011

MOVIE TABLE

CREATE TABLE movie (

! id!! ! ! INT UNSIGNED NOT NULL AUTO_INCREMENT,

! ! ! ! ! PRIMARY KEY (id),

! title!! ! VARCHAR(50) NOT NULL,

! acquired!! DATETIME,

! borrow_id! INT

);

Tuesday, March 15, 2011

1) Create the rest of the tables for the Movie Collection
database.

2) Verify all of your tables by comparing to the Movie
Collection database schema handout.

3) If you run into problems, ask me for the schema creation
handout for guidance.

LAB

Tuesday, March 15, 2011

INSERT

Now that we have a database and some tables to work with,
let’s start adding data! This is accomplished with the
INSERT statement:

INSERT INTO table_name VALUES (...);

There are several variations to the INSERT statement, so
let’s take an example insertion and rewrite it in several
ways...

Tuesday, March 15, 2011

INSERT VARIATIONS

INSERT INTO movie

VALUES (NULL, ‘Hackers’, NOW(), NULL);

INSERT INTO movie (title, acquired)

VALUES (‘Hackers’, NOW());

INSERT INTO movie

SET title=‘Hackers’, acquired=NOW();

Tuesday, March 15, 2011

1) Insert the data presented in the handout for the movie
and person tables. You can ignore the other tables for
now, as that’s too much tedious typing. :)

Make sure each row goes in successfully, and if you make
a mistake, ignore it for now - in a few slides you’ll learn
how to correct it.

LAB

Tuesday, March 15, 2011

SELECT

With data in the database, now the question is how to view
it. This is where the SELECT statement comes in.

SELECT columns FROM table

The SELECT statement is a very powerful tool, and there is
quite a bit to it. A simple example:

SELECT * FROM movie;

This will return all columns for every row in movie

Tuesday, March 15, 2011

WHERE CLAUSE

The bare SELECT statement is occasionally useful for a full
dump of the information in a table, but normally, we are
only interested in specific rows. Filtering the result set in a
SELECT statement is handled via the WHERE clause:

SELECT columns FROM table WHERE conditions

Example:

SELECT * FROM person WHERE first = ‘John’;

Tuesday, March 15, 2011

WHERE CONDITIONS

The conditions for a WHERE clause can be simple or
extraordinarily complex.

Let’s spend a few minutes on our live systems to experiment
with and discover various SELECT statements and WHERE
clauses.

Column aliases
Basic operators and functions
Booleans
Basic pattern matching

Tuesday, March 15, 2011

ORDERING

SELECT statements also support the ability to order results,

via the ORDER BY clause:

SELECT columns FROM table ORDER BY
specification

Example:

SELECT * FROM person ORDER BY last ASC;

This will return all columns for all rows from the person table
ordered by the column ‘last’ in ascending order.

Tuesday, March 15, 2011

LIMITING RESULTS

Sometimes a user is only interested in seeing a subset of the
results. This is achieved with the LIMIT clause:

SELECT columns FROM table LIMIT number

Example:

SELECT * FROM person LIMIT 5;

This will return 5 rows from the person table (no guarantee
on which rows are returned! Why?)

Tuesday, March 15, 2011

1) Look through the MySQL documentation on the SELECT
statement. Can you start to see the power and complexity
of this command?

2) How many people in the database have a last name that
starts with ‘B’? Do this with a proper SELECT statement

and WHERE clause, don’t count by hand!

3) Bonus: Create a listing of people where the output is of the
form “Last, First Middle”. For example: “Jolie, Angelina”.
Look up the CONCAT functions, and possibly IFNULL.

LAB

Tuesday, March 15, 2011

UPDATING DATA

With the foundation of WHERE clauses, the final two major SQL
statements can be explored: UPDATE and DELETE.

To change information in a table, one makes use of the UPDATE
statement:

UPDATE table SET name=value... WHERE conditions

Example:

UPDATE movie SET acquired=NOW()

WHERE title = ‘Tron’;

Tuesday, March 15, 2011

DELETING DATA

Finally, to remove rows from a table, use the DELETE statement:

DELETE FROM table WHERE conditions

Example:

DELETE FROM person WHERE last LIKE ‘B%’;

This will delete every row in person where the column ‘last’
begins with the letter ‘B’.

Tuesday, March 15, 2011

DELETING
STRUCTURES
When a table, database or any other structure in the RDBMS needs
to be completely removed, this is done with the DROP statement:

DROP type name

Example:

DROP TABLE genre;

This will completely remove the genre table and all data in it.
This is irreversible! Be very careful with the DROP
statement!

Tuesday, March 15, 2011

LESS TYPING!

Until this point, we have been typing every command in
manually into the mysql client tool. This gets old.

There is a better way!

source filename

This will read “filename” as a series of SQL commands and run
them in the current mysql session.

A SQL script!

Tuesday, March 15, 2011

1) Drop your MovieCollection database.

2) Go to http://server1.example.com/mysql

3) Download “create-moviedb.sql” and “load-moviedb.sql”

4) Source create-moviedb.sql

5) Source load-moviedb.sql

6) Perform some queries looking at the data. If you wish to
experiment some more with UPDATE, DELETE and DROP, just
repeat steps 4 and 5 when you are done.

LAB

Tuesday, March 15, 2011

JOINS

Now that we have more data in our tables, we can discuss
joins.

A join occurs when data is pulled from more than one table.
The rows from each table are then joined together somehow,
generally by matching values.

Consider the actor, movie and person tables. What if we
wanted to produce a listing of movie title and actor name. Can
it be done?

Of course!

Tuesday, March 15, 2011

JOINS

SELECT movie.title AS Title,

CONCAT_WS(‘’, person.first, ‘ ‘, person.last) AS Name

FROM movie INNER JOIN actor ON

! actor.movie_id = movie.id

INNER JOIN person ON

! actor.person_id = person.id

ORDER BY Title ASC;

Think about that one for a minute...

Tuesday, March 15, 2011

JOINS

The rabbit hole that is joining goes on very, very deep. There are
inner joins, outer joins, left and right joins and more.

A good book and some experimentation is the best way to master
these more advanced topics. The MovieCollection database, with
some additional rows could serve as an excellent learning ground
should you be interested.

Tuesday, March 15, 2011

1) Come up with a single SELECT statement which reports
each movie title and it’s genres.

2) Bonus: come up with a SELECT statement which shows
director first and last names and what genre’s they have
developed.

LAB

Tuesday, March 15, 2011

slideshow.end();

Tuesday, March 15, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

MYSQL ACCESS
CONTROLS

Access Denied!

Tuesday, March 15, 2011

USERS

For the entire course up until this point, we have been
logging in to the database as user root.

Generally, this is not desirable behavior for a number of
reasons:

One user and one password limits database use to one
person, as sharing passwords is bad karma.

Security - root user by default can do anything.

Accountability.

Tuesday, March 15, 2011

CREATING USERS

To create a new user, use the CREATE USER statement:

CREATE USER account IDENTIFIED BY ‘password’

Example:

CREATE USER ‘moviedba’@‘localhost’ IDENTIFIED
BY ‘popcorn’;

This creates a new account with no privileges called “moviedba”
with a password of “popcorn”, allowed to login from “localhost”.

Tuesday, March 15, 2011

PRIVILEGES

The various actions that can be performed in MySQL are
categorized into privileges, and the ability to perform an action or
not is controlled by the privileges that have been granted to a user.
Examples of some privileges:

SELECT: Issue SELECT statements

INSERT: Insert new data

DROP: Dropping structures within the database

SHUTDOWN: Allowed to initiate a shutdown of the server

Tuesday, March 15, 2011

PRIVILEGES

The privileges granted can be limited in various ways:

Global: All databases and tables - think superuser

Database: All tables within a specific database

Table: A specific table in a specific database

Column: Specific columns in a table and database

Tuesday, March 15, 2011

GRANT

The GRANT statement is used to control privileges:

GRANT privileges (columns) ON what TO account

Example:

GRANT SELECT ON MovieCollection.* TO
‘moviedba’@‘localhost’;

This GRANT allows “moviedba” connected from “localhost” to

perform SELECT statements on all tables in the MovieCollection
database.

Tuesday, March 15, 2011

PRIVILEGE LEVELS

As mentioned previously, privileges can be granted on several
different levels. This is achieved with the what parameter to the
ON clause in the GRANT statement:

GRANT ALL ON *.* ...

GRANT ALL ON MovieCollection.* ...

GRANT ALL ON MovieCollection.movie ...

GRANT UPDATE (title) ON MovieCollection.movie ...

Tuesday, March 15, 2011

PRIVILEGE TABLES

In the mysql database, there are tables which describe the various
access controls:

user: The user accounts and global privileges

db: Database level privileges

host: Host level privileges (generally not used)

tables_priv: Table level privileges

columns_priv: Column level privileges

Tuesday, March 15, 2011

1) Consult the documentation for details on privileges. Read up on the 26 or so
privileges available and their meanings. Also, peruse the documentation on the
GRANT statement.

2) Create a “movieclerk” user which has full select privileges on all tables in
MovieCollection, and insert/update/delete privileges on just the actor table in
MovieCollection. Test the account.

3) Create a full power “moviedba” user with full access to everything in the
MovieCollection database. Test the account.

4) Create a “movieremote” account which has clerk level access from a neighbor
machine. Get your neighbor to test the account. Read up on the mysql client
command to figure out how to do this.

5) Read up on the REVOKE command and remove the modification abilities on the
clerk accounts. Also, use SET PASSWORD to change the password. Verify.

LAB

Tuesday, March 15, 2011

slideshow.end();

Tuesday, March 15, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

MYSQL BASIC
ADMINISTRATION

Logs? Configs? mysqladmin...

Wednesday, March 16, 2011

MY.CNF

The main MySQL configuration file is my.cnf

On many Linux systems, when MySQL is installed from package,
this file is located in /etc/my.cnf

Users can also have a .my.cnf in their home directory, which will
be parsed for client options when using the mysql command.

The format for the my.cnf file is similar to a windows ini file
format. Sections are headed with [sectionname] and settings

are simple name=value pairings.

my.cnf settings are simply command line argument defaults

Wednesday, March 16, 2011

IMPORTANT MY.CNF
SETTINGS

There are lots of settings available in my.cnf. Some important ones
include:

datadir: Filesystem path to data files

log-error: Filesystem path for error log file

max_allowed_packet: Sets maximum packet size for data
exchanges between server and client.

To see all parameters for mysqld:

mysqld --help --verbose

Wednesday, March 16, 2011

1) Browse through your global my.cnf file. Look up some of the
parameters in the MySQL documentation.

2) Set up a user .my.cnf file so that you can connect to your
MovieCollection database as moviedba automatically, without
needing to type a password.

LAB

Wednesday, March 16, 2011

MYSQLADMIN

mysqladmin is a very useful command line administration
tool for the MySQL system. Some of the operations an
admin can perform include:

Database creation/deletion

Cache flushing

Server shutdown

Password management

Wednesday, March 16, 2011

1) Use mysqladmin to ping your server. An exit code of 0 means
the server is running, 1 means it is not. The exit code can be
viewed by typing “echo $?”. Shutdown your server and ping
again. Can you imagine how you could write a simple server
monitoring script?

2) Explore the processlist subcommand and theorize as to it’s
output. In another window, connect to the server. Then run
the processlist subcommand again. See your second

session? Use the kill subcommand to destroy your second
connection. Very useful for runaway queries. We will explore
this further in a future lecture.

LAB

Wednesday, March 16, 2011

LOGS

MySQL maintains a log file with useful information on the
server’s activity.

The path name to the log file can be determined by
examining the global my.cnf file.

During a future lab, take a few minutes to examine your log
file. Use google for more information on any cryptic log
messages

Wednesday, March 16, 2011

NETWORKING

By default, the MySQL server will grab every network
interface on a machine and listen on port 3306.

To control the IP addresses MySQL will listen for traffic on,
adjust the “bind-address” parameter. Example:

bind-address = 192.168.1.15

If this setting is not specified, or if it is set to 0.0.0.0,
MySQL will listen on all interfaces. Note that those are the
only options - all interfaces or one.

Wednesday, March 16, 2011

ROOT PASSWORD
RESET

The class has already covered changing passwords, but how to
reset the root password when it is lost?

There are two ways of doing this:

Disable all access controls, restart the server and change it
manually. Then restart again with access controls enabled. Not
the best solution.

Write a short SQL script to reset the password, then add an init-
file option to my.cnf.

Let’s see examples of both methods...

Wednesday, March 16, 2011

INSECURE ROOT
PASSWORD RESET
/etc/init.d/mysqld stop

mysqld_safe --skip-grant-tables &

mysql mysql

UPDATE user SET password = '' where user =
'root' AND host = 'localhost';

mysqladmin shutdown

/etc/init.d/mysqld start

Wednesday, March 16, 2011

SECURE ROOT
PASSWORD RESET

Create a new text file with the following contents:

SET PASSWORD FOR

'root'@'localhost' = PASSWORD('new_password');

Name it /var/lib/mysql/mysql-init

Add under [mysqld] to /etc/my.cnf:

 init-file=/var/lib/mysql/mysql-init

Restart the mysqld service

Remove the init-file line from /etc/my.cnf

Remove /var/lib/mysql/mysql-init

Wednesday, March 16, 2011

1) Practice resetting the root password on your database using
both the secure and insecure method. Verify each time by using
a password of “secure” for the secure method, and “insecure”
for the insecure method. When you are finished, you can reset
the password to whatever you wish.

2) Change your MySQL configuration to not accept any
connections from the network, only local connections. Test
with a neighbor.

LAB

Wednesday, March 16, 2011

BACKUPS

All of this data...

What would happen if someone were to SIGKILL your
mysqld process? Or if a hard drive detonated?

Sad, sad days, that’s what!

So instead of worrying about such things, we backup our
data. Sometimes weekly, sometimes daily, sometimes
constantly..

Wednesday, March 16, 2011

BACKUPS IN MYSQL

There are several backup techniques available:

mysqldump: Tried and true - everything dumped as SQL

mysqlhotcopy: For MyISAM tables only - faster than

mysqldump.

Filesystem backups/snapshots

Replication

Wednesday, March 16, 2011

MYSQLDUMP

By far, mysqldump is the most common simple backup
strategy, as the backup is portable (all just SQL) and fast
for most databases.

mysqldump is very easy to use. Often no arguments are
necessary besides credentials and the database to dump.

Once dumped, the backup can be used for replication setup,
experimentation, or simply compressed and stored in
archive as a point in time backup.

Wednesday, March 16, 2011

COPYING AND
SNAPSHOTS

Backups can also be made by copying data files. If the database is being stored
on a filesystem or device that supports snapshotting, backups can be easily
performed with minimal downtime:

On the server, execute:

FLUSH TABLES WITH READ LOCK

Take a snapshot of the data directory filesystem (or if snapshots are
unavailable, start copying data files)

Then run:

UNLOCK TABLES

Backup from the snapshot at leisure, then destroy it.

Wednesday, March 16, 2011

REPLICATION

Replication is common in larger environments, where the
cost to run multiple servers is outweighed by the need for
instantaneous backups and failover capability.

Replication involves streaming every change from the
master database to all slave databases. In this manner,
every database is a complete copy of the master.

Backups can be easily pulled from slaves without impacting
production at all, with the extra advantage that if the master
goes down, a slave can take over.

Wednesday, March 16, 2011

SETTING UP
REPLICATION

Setting up replication is actually quite easy with MySQL.
Short form:

Enable binary logging; assign unique server id’s

Stop all writes to Master, grab status and perform backup

Restore backup to Slave

Point Slave to Master using status information

Start replication on Slave. Verify.

Wednesday, March 16, 2011

BINARY LOGGING AND
SERVER ID’S

To enable the binary log, add a log-bin line to my.cnf

Every server must have a unique server identifier specified in the my.cnf file:

Master

[mysqld]

server-id=5

log-bin=master

Slave

[mysqld]

server-id=10

Wednesday, March 16, 2011

LOCK, STATUS AND
BACKUP
FLUSH TABLES WITH READ LOCK

SET GLOBAL read_only = ON;

SHOW MASTER STATUS;

Write down log file and log position

Perform backup

UNLOCK TABLES

SET GLOBAL read_only = OFF;

Wednesday, March 16, 2011

CREATE SLAVE
ACCOUNT ON MASTER

Create the slave account on the Master:

GRANT REPLICATION SLAVE ON *.*

TO ‘slave’@‘slave-server.mycompany.com’

IDENTIFIED BY ‘slavepass’;

This account will be used by the Slave to connect to the
Master to transfer the binary logs.

Wednesday, March 16, 2011

RESTORE TO SLAVE

Restore the Master backup to the Slave server:

mysql -u root -p < backup.sql

Wednesday, March 16, 2011

SET UP SLAVE

Point the Slave to the Master:

CHANGE MASTER TO

MASTER_HOST = ‘master-server.mycompany.com’,

MASTER_USER = ‘slave’,

MASTER_PASSWORD = ‘slavepass’,

MASTER_LOG_FILE = ‘master.000001’,

MASTER_LOG_POS = 238;

Wednesday, March 16, 2011

START THE SLAVE AND
VERIFY

Start up the Slave threads:

START SLAVE;

Verify using:

SHOW SLAVE STATUS\G

Wednesday, March 16, 2011

1) Use mysqldump to back up your MovieCollection database.
Take a look at the backup file and note how it works. Read the
documentation on mysqldump and play with some of the
options.

2) Once you have a good, solid backup, DROP the MovieCollection
database and restore from backup. Verify everything is correct.

3) Work with a partner to establish replication from one machine
to the other.

LAB

Wednesday, March 16, 2011

slideshow.end();

Wednesday, March 16, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

STORAGE ENGINES
MyISAM, InnoDB, Archive, Memory

Tuesday, March 15, 2011

STORAGE ENGINES

As discussed throughout the course, MySQL tables are all
backed to a pluggable storage engine.

The storage engine defines the features available to the
table, as well as the underlying storage and organization of
the data.

There are a number of engines available for use with
MySQL, which will be explored in the following slides.

Tuesday, March 15, 2011

MYISAM

The MyISAM storage engine was the original engine for all
MySQL systems from 3.23 until 5.5, when it became
InnoDB.

MyISAM is a direct descendent of the ancient ISAM table
format (deprecated), with a focus on speed.

MyISAM is non-transactional.

Transactional? What now?

Tuesday, March 15, 2011

TO TRANSACTION OR
NOT TO TRANSACTION
Transactional

Safer from server crash

Run multiple changes in a single transaction

Rollback your changes if something goes wrong

Better write concurrence

Non-Transactional

Faster – No transaction overhead

Smaller file system footprint

Smaller RAM requirements

Tuesday, March 15, 2011

MYISAM

Each table is composed of 3 files

table.frm Format File: Stores table definition

table.MYD Data File: Stores the data

table.MYI Index File: Stores index data

Table files can be moved to another database/server by copying. Should
only be performed under set conditions as discussed in backups lecture.

Supports full text searching and extensive indexing capabilities

No deadlocks – Uses full table lock for Inserts - at the cost of reduced
concurrency.

Tuesday, March 15, 2011

MYISAM

Three possible table storage formats:

Fixed

All rows the same size - fast lookups, but takes more space on
disk

Variable

Not all rows the same size, so takes less space to store

Compressed

Packed to save space, fast retrieval, read-only

Tuesday, March 15, 2011

MYISAM PROS

Supports FULLTEXT/Spatial Indexes

Low filesystem foot prints

Uses less RAM

Fast SELECT/INSERT (append) performance

Maintains an internal row count (COUNT(*) is fast)

Tuesday, March 15, 2011

MYISAM CONS

No transactional support

Table level locking only

No crash recovery

Blocking backups

No support for Foreign Keys

Tuesday, March 15, 2011

INNODB

Transactional Engine - Supports COMMIT, SAVEPOINT, ROLLBACK

By default data/index stored in $DATADIR/ib_data* files.

Like all MySQL Storage engines, there will be a table format file (.frm)

By default the tablespace is shared for all database/tables in server. But
tables can be configured to use individual tablespaces (see 13.2.2.1).

NOTE: Even with this option the default tablespace /var/lib/
mysql/ibdata is needed. NEVER delete an ib_data file if unsure of

what you’re doing.

InnoDB logs are used to store transaction activity. Can be deleted/resized
if MySQL is stopped properly.

Tuesday, March 15, 2011

INNODB

Full Atomicity, Consistency, Isolation, Durability or ACID
compliance, for more on ACID go to:

http://en.wikipedia.org/wiki/ACID

Auto recovery in case of server crash (Durability)

Multi-versioning concurrency control (MVCC)

Row-level locking - Great for WRITE concurrency

Supports Foreign Keys!

Tuesday, March 15, 2011

INNODB PROS

ACID Compliance

Crash auto recovery

High Storage Limit (64TB per tablespace!)

Row-level locking

Foreign Keys

MVCC Support

Clustered Indexes

Non-blocking online backups

Tuesday, March 15, 2011

INNODB CONS

No Fulltext/Spatial indexes

Higher filesystem footprint (+2x)

RAM hungry. Performance depends on having large buffers.

Tuesday, March 15, 2011

MEMORY

Data and indexes are stored in RAM! Super performance!

The table has a .frm file on disk. A restart will maintain the table
structure but the data/index will be gone.

Limited by max_heap_table_size setting (default 16M)

Table level locking

Cannot contain TEXT or BLOB.

NOTE: This is one of the reason why lots of temporary tables
can be created on disk when we use a JOIN on tables containing
TEXT or BLOB!

Tuesday, March 15, 2011

MEMORY PROS

Fast reads/writes

Support for Hash and Tree indexes

Tuesday, March 15, 2011

MEMORY CONS

Volatile data

Limited size

No transactions

Table level locking

No support for foreign keys

No TEXT/BLOB fields

Tuesday, March 15, 2011

ARCHIVE
Stores large amounts of data without indexes in a very small footprint

Supports INSERT and SELECT, but not DELETE, REPLACE, or UPDATE

Table composed of three files:

.frm format file

.ARZ data file

.ARM meta data

Uses row level locking

Rows are compressed on insertion and uncompressed on retrieval

Designed for efficient archival storage of large amounts of data

data warehouse applications, data archiving, data auditing

Tuesday, March 15, 2011

ENGINES

To view the available engines on a server:

SHOW ENGINES;

To view the engine a table is using:

SHOW CREATE TABLE db.table

SHOW TABLE STATUS

SHOW TABLE STATUS LIKE 'db.table'

Tuesday, March 15, 2011

USING ENGINES

To create a table with a non-default storage engine:

CREATE TABLE table (...) ENGINE=engine

Example:

CREATE TABLE test (

! testcol INT

) ENGINE=InnoDB;

Tuesday, March 15, 2011

CHANGING ENGINES

It is possible to change the engine of an existing table using the ALTER
TABLE statement:

ALTER TABLE test ENGINE=MyISAM;

Will increase CPU load and I/O latency while running

Conversion process may fail if:

The target engine doesn't support all features used in the original engine.

The table data exceeds the capabilities of the new engine.

In the event of a conversion failure, MySQL will simply continue using the
original table engine.

Tuesday, March 15, 2011

1) Convert the movie table to InnoDB.

2) Bonus: Refer to sections 13.2.3 and 13.2.5 in the MySQL
Reference Manual and carefully add an additional 100M auto-
extending tablespace for InnoDB.

3) Consider the possible performance impact of separating out
tablespaces as well as index files for InnoDB across multiple
disks.

LAB

Tuesday, March 15, 2011

slideshow.end();

Tuesday, March 15, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

BASIC SERVER
PERFORMANCE TUNING

RAID 10!

Tuesday, March 15, 2011

DB SERVER
HARDWARE

Some best practice considerations for hardware:

64 bit cpu! More memory, more registers!

Tons of RAM!

4-8 cpu cores max - more is not always better because of concurrency
contention issues, though as MySQL improves, this guideline might
change.

RAID everywhere.

RAID 10 for MySQL data directory - best performance.

RAID 1 or 5 for the operating system

Tuesday, March 15, 2011

64 BIT, EH?

MySQL is threaded - PAE (Physical Address Extension)
doesn’t work very well:

Each thread in MySQL could only use about 2.5GB of RAM

That means global buffers could not be larger than 2.5GB
at best.

Performance would suffer because of the additional
overhead from PAE

8 more GPR/SSE registers in 64-bit

Tuesday, March 15, 2011

RAID COMPARISON

Tuesday, March 15, 2011

OPERATING SYSTEM

As mentioned previously, the operating system should
preferably be installed on some sort of RAID storage, and in
a perfect world separate from the database RAID system.

Also preferred to use Linux, but if you have to use Windows,
so be it. ;)

As for flavor/version, there isn’t a terrible amount of
concern here, so long as you have a relatively recent 64 bit
kernel and any additional features you need.

Tuesday, March 15, 2011

ADDITIONAL OS
CONSIDERATIONS

Care should be taken to ensure the database is properly started
and stopped with the operating system state.

Logs should be monitored and rotated as necessary.

Simple system and database monitoring scripts can be utilized to
alert on issues including:

Server and database health

Low disk space

Poor performance

Tuesday, March 15, 2011

MYSQL SERVER
TUNABLES

There are many, many variables in the MySQL server available for
tuning and tweaking.

With minor adjustments on a handful of these variables, one can often
optimize the server to within a few percent of perfect. Beyond this
point, additional changes will require extensive benchmarking and
analysis to squeeze a minimal amount of additional performance.

We will cover the major options here; consult a google beyond that. :)

After this point, database structure and query structure should be
scrutinized, which is the topic of the following lecture.

Tuesday, March 15, 2011

SEEING DEFAULT
SETTINGS

To see all of the default settings for the tuning variables:

/usr/libexec/mysqld --verbose --help

This will produce a list of every tunable variable parameter that
you can plug in to my.cnf, as well as a long table of default
values for every setting.

An excellent resource documenting all parameters, including
those not available via the command line, is section 5.1.3.

Tuesday, March 15, 2011

SEEING CURRENT
SETTINGS

To see all of the current settings for the tuning variables:

SHOW [GLOBAL] VARIABLES;

This will show the current running values for all of the tuning

variables for the current session. The GLOBAL parameter shows
server-wide settings.

Note that some of these settings can be changed dynamically with:

SET [GLOBAL] name = value;

Tuesday, March 15, 2011

FIRST, CHECKING
STATUS
Before tuning values, it is important to consider the server’s
current status and operation metrics.

SHOW GLOBAL STATUS

Across all connections

SHOW SESSION STATUS

Just this connection

Provides a report with over 250 metrics on server operation!

Tuesday, March 15, 2011

SERVER STATUS

Connections Number of new connections established

Max_used_connections Check if it matches max_connections

Threads_cached Number of threads in “thread_cache”

Threads_connected Number of concurrent connections

Threads_created Threads created (thread cache misses)

Threads_running Queries currently executing

Tuesday, March 15, 2011

SERVER STATUS

Open_tables

Number of currently open tables

Single table opened twice counts as two

Check that table_cache is large enough to accommodate open_tables

Opened_table

Number of times table was opened (table_cache miss)

Check how many opens per seconds are happening:

mysqladmin –i 1 –r extended-status | fgrep opened_table

Tuesday, March 15, 2011

SERVER STATUS

Slow_queries

Queries considered to be slow (long_query_time)

Logged in slow query log if it is enabled (discussed in next lecture)

Tuesday, March 15, 2011

ENGINE STATUS

SHOW ENGINE InnoDB STATUS\G

Great way to see what is going on with InnoDB!

File IO

Buffer Pool

Log Activity

Row Activity

Lock information, deadlocks, transaction status, pending operations, etc.

Tuesday, March 15, 2011

PERSISTENT
VARIABLES

To change one of the tuning variables permanently, simply put it in

my.cnf and restart the server:

table_cache = 128

max_connection = 200

...

Some of the many available tuning variables:

Tuesday, March 15, 2011

TUNING VARIABLES

max_connections

Maximum number of connections to the server.

thread_cache_size

Cache up to this many treads after disconnect.

table_cache

Number of tables MySQL can keep open at the same time. Closing/
opening table is expensive, but it does eat RAM to keep too many open..

Tuesday, March 15, 2011

TUNING VARIABLES

There are lots of variables out there (recall section 5.1.3), and fortunately,
many, many sample configurations to consider - MySQL even ships with
several configuration variations to use as templates.

There are also literally hundreds of guidelines, white papers, blogs, books
and forums to help with tweaking every little parameter.

Many factors will go into the final configuration, including hardware setup,
operating system, database size/use/features/demands and testing

Tuesday, March 15, 2011

REVERSE DNS

Due to the flexibility of the ACL system, MySQL normally performs a
reverse DNS lookup when a client connects, in order to determine the host
name. But the lookup process can be slow, resulting in sluggish connection
speeds.

Unfortunately, these lookups are needed if grant tables use host names
instead of IPs..

So the best practice, if possible, is to use IPs, not host names, for MySQL
accounts!

To fully disable these reverse lookups:

Set skip-name-resolve in my.cnf, restart MySQL

Tuesday, March 15, 2011

1) Adjust the table cache to 128, thread cache to 32 and disable
DNS reverse lookups.

2) Scroll through the status output for your server. Look up the
meaning of at least 5 variables that are not immediately
apparent to you.

LAB

Tuesday, March 15, 2011

slideshow.end();

Tuesday, March 15, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

BASIC DATABASE STRUCTURE
AND QUERY TUNING

Index, please!

Wednesday, March 16, 2011

INDEXES

An index is a fancy way of describing a structure used in a
database to speed up searches. Consider:

SELECT account_id FROM account

WHERE balance = 12345.67;

Without an index, the database would have to crawl through
every single row in the account table to locate each account with a
current balance of 12345.67. This is called a full table scan, and it
is one of the most expensive database operations out there, to be
avoided at almost all costs!

Wednesday, March 16, 2011

INDEXES

Fortunately, with an index, the database can locate the records
many, many times faster (often many orders of magnitude
faster)

How the heck?

Internally, an index uses one of several different complex
computer science data structures to boil down and organize the
information, allowing for rapid searches.

How cool is that?!

Wednesday, March 16, 2011

WHY BOTHER WITH
TABLES THEN?

You might think “Why don’t we just use indexes instead of
tables?”

Well, interestingly enough, the index won’t actually hold the data
in the table - it holds a reference to the row that holds the data.

So while you might build an index on the balance column of the
account table, when the database uses that index to quickly find
every account with a balance of 12345.67, it’s actually just getting
referred back to unique rows in the table which it knows have the
right value.

Wednesday, March 16, 2011

INDEX EVERYTHING?

Now you might think “Why don’t we index everything? Every column of
every table. Index it all so any search I might do will be extremely fast!”

On the outside, this seems like a fair idea. But, there are several
considerations:

Indexes only help with certain types of searches (such as range
searches and equality searches)

Indexes take up disk space

Indexes have to be updated any time the table is changed

Indexes can only be created on certain data types in certain engines

Wednesday, March 16, 2011

WHAT TO INDEX,
THEN?!

Frustrated, you might wonder “Well, what should I index, then?!”

There is no perfect answer to this question, as it depends on:

Types of common queries

Data types

Size of table

Rough idea: index identifier fields and consider indexing fields
that are regularly searched by equality or range.

Wednesday, March 16, 2011

CREATING INDEXES

Creating an index on an existing table is actually quite simple:

CREATE INDEX name ON table (columns...)

Example:

CREATE INDEX bal_idx ON account (balance);

But normally, we create indexes with table creation...

Wednesday, March 16, 2011

CREATING INDEXES

CREATE TABLE account (

! id!! ! ! INT UNSIGNED NOT NULL,

! balance!! DECIMAL(15, 4),

! ! ! ! ! INDEX (balance)

)

Wednesday, March 16, 2011

VIEWING INDEXES

To see the indexes defined on a table:

SHOW INDEX FROM table

Try:

SHOW INDEX FROM movie;

Wednesday, March 16, 2011

1) Create indexes on the actor and director tables for the *_id
columns. Does it make sense to have an index for each field
separately, or one combined index? Justify your answer.

2) Browse the documentation on creating indexes and some of the
advanced topics presented therein.

LAB

Wednesday, March 16, 2011

EXPLAIN

In a DBA’s lifelong quest to tune SELECT queries, it is often
helpful to see what the MySQL optimizer is doing.

This is what the EXPLAIN command does:

EXPLAIN select_statement

Example:

EXPLAIN SELECT * FROM movie;

Wednesday, March 16, 2011

EXPLAIN OUTPUT

Section 7.2.2 covers the output in detail, but in short form:

Select type - categorizes select

Table - name of table being explained

The order indicates MySQL's read order

Remember, the FROM clause does not specify order

The order is chosen by MySQL's built-in optimizer, otherwise
can be “hinted”

Wednesday, March 16, 2011

EXPLAIN OUTPUT

Type - join type; how efficiently MySQL scans, ordered from best
to worst:

system – fastest type

eq_ref - “=” referenced by a primary key or unique key (1 row)

ref - “=” by non-unique key (multiple rows)

range - references by <> or complex ranges

index

ALL - full table scan – slowest type

Wednesday, March 16, 2011

EXPLAIN OUTPUT

Possible keys - which columns the optimizer could have used
as indexes

Key - index MySQL actually selected

Key length - used key length in bytes

Check expected length is used for multiple column indexes

Ref - the column or constant, key is matched against

Nulls in these columns indicate they are targets for
improvement

Wednesday, March 16, 2011

EXPLAIN OUTPUT

Rows - estimation of rows read

Extra – extra information

using index - A covering index is used – a good thing!

using where - a where clause is used for filtering

using filesort - external sort is used

using temporary - temporary table will be used

Wednesday, March 16, 2011

EXPLAIN

The output from EXPLAIN can be analyzed to find:

Candidates for indexes, as scans are bad!

Possible query rewriting, maybe even breaking into multiple
queries in some cases.

Playing with join ordering.

See section 7.2.1 for a preliminary discussion of optimization
techniques for EXPLAIN output, and google for further details.

Wednesday, March 16, 2011

1) Put together a few SELECT statements, at least one or two
including joins. Use EXPLAIN to see how the optimizer would
execute your queries.

2) Bonus: Try to create some indexes that improve your execution
plan reported by EXPLAIN.

3) Bonus bonus: Write a short script to insert a few hundred
thousand fake records into the MovieCollection database. Then
experiment with EXPLAIN and indexing to boost search
performance.

LAB

Wednesday, March 16, 2011

QUERY PROFILER

Way beyond a simple EXPLAIN, the query profiler can provide
exceptionally detailed metrics on the actual execution of a
statement.

Shows resource usage of the execution of a query

Introduced in mysql-server 5.0.37

Run on a per-session basis

Stores results in information_schema.PROFILING, a memory
table unique to the session which is destroyed at disconnect

Wednesday, March 16, 2011

ENABLING PROFILING

To enable the query profiler, just set a session variable:

SET profiling = 1;

The profiler has a finite set of queries it can track data on:

15 queries saved by default

Max is 100

SET profiling_history_size = 100

Wednesday, March 16, 2011

USING THE PROFILER

To see all stored profiles:

SHOW PROFILES;

And to view the metrics on a given query id:

SHOW PROFILE type FOR QUERY query_id

Where type is one of the following...

Wednesday, March 16, 2011

PROFILE TYPES

ALL – all information

BLOCK IO – disk I/O mostly

CONTEXT SWITCHES – (in)voluntary context switches

CPU – CPU time, both system and user

IPC – counts for msgs sent and received

MEMORY – doesn’t work

PAGE FAULTS – counts for major/minor page faults

SOURCE – shows functions from source code

SWAPS – swap counts

Wednesday, March 16, 2011

1) Enable profiling for your mysql instance.

2) Experiment with a few queries and familiarize yourself with the
profiler output. Research a bit into the documentation for the
profiler and the current limitations.

LAB

Wednesday, March 16, 2011

ANALYZE

The ANALYZE statement tells the server to re-analyze an index,
computing a new key distribution and storing this information in
the index summary.

The key distribution is used by the optimizer in deciding the
order for JOIN’s connected with something besides a constant.

What?!

Yeah, I know. Short of a looong discussion on index design,
suffice it to say that performing a periodic ANALYZE on a very
dynamic table will improve the optimizer’s performance.

Wednesday, March 16, 2011

ANALYZE SYNTAX

The syntax is simple:

ANALYZE TABLE table

Wednesday, March 16, 2011

OPTIMIZE

As data is deleted and updated in a database, holes start to form
in the underlying storage due to the changes.

Normally, the storage engines continue refilling most of the
holes, but this creates a largely fragmented table.

The OPTIMIZE TABLE statement asks the storage engine to
clean house:

OPTIMIZE TABLE table

Wednesday, March 16, 2011

SLOW QUERIES

All of this talk about improving query performance.. If only there
were some way to easily and quickly identify these slow queries..

Oh wait, there is! That’s what the slow query log is used for!

Wednesday, March 16, 2011

SLOW QUERIES

The slow query log is not enabled by default. To enable it, add
the following to /etc/my.cnf under the [mysqld] section:

log-slow-queries=file

long_query_time=seconds

Records all queries taking longer than long_query_time to
execute. The default is 10 seconds.

These queries are often prime candidates for optimization!

Use mysqldumpslow to summarize the log file.

Wednesday, March 16, 2011

1) Analyze, then optimize all tables in MovieCollection.

2) Enable the slow query log on your server, then simulate some
slow queries using the SLEEP(seconds) function.

3) Use mysqldumpslow to view a report on your “slow” queries.

LAB

Wednesday, March 16, 2011

slideshow.end();

Wednesday, March 16, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

