
BASIC DATABASE STRUCTURE
AND QUERY TUNING

Index, please!

Wednesday, March 16, 2011

INDEXES

An index is a fancy way of describing a structure used in a
database to speed up searches. Consider:

SELECT account_id FROM account

WHERE balance = 12345.67;

Without an index, the database would have to crawl through
every single row in the account table to locate each account with a
current balance of 12345.67. This is called a full table scan, and it
is one of the most expensive database operations out there, to be
avoided at almost all costs!

Wednesday, March 16, 2011

INDEXES

Fortunately, with an index, the database can locate the records
many, many times faster (often many orders of magnitude
faster)

How the heck?

Internally, an index uses one of several different complex
computer science data structures to boil down and organize the
information, allowing for rapid searches.

How cool is that?!

Wednesday, March 16, 2011

WHY BOTHER WITH
TABLES THEN?

You might think “Why don’t we just use indexes instead of
tables?”

Well, interestingly enough, the index won’t actually hold the data
in the table - it holds a reference to the row that holds the data.

So while you might build an index on the balance column of the
account table, when the database uses that index to quickly find
every account with a balance of 12345.67, it’s actually just getting
referred back to unique rows in the table which it knows have the
right value.

Wednesday, March 16, 2011

INDEX EVERYTHING?

Now you might think “Why don’t we index everything? Every column of
every table. Index it all so any search I might do will be extremely fast!”

On the outside, this seems like a fair idea. But, there are several
considerations:

Indexes only help with certain types of searches (such as range
searches and equality searches)

Indexes take up disk space

Indexes have to be updated any time the table is changed

Indexes can only be created on certain data types in certain engines

Wednesday, March 16, 2011

WHAT TO INDEX,
THEN?!

Frustrated, you might wonder “Well, what should I index, then?!”

There is no perfect answer to this question, as it depends on:

Types of common queries

Data types

Size of table

Rough idea: index identifier fields and consider indexing fields
that are regularly searched by equality or range.

Wednesday, March 16, 2011

CREATING INDEXES

Creating an index on an existing table is actually quite simple:

CREATE INDEX name ON table (columns...)

Example:

CREATE INDEX bal_idx ON account (balance);

But normally, we create indexes with table creation...

Wednesday, March 16, 2011

CREATING INDEXES

CREATE TABLE account (

! id!! ! ! INT UNSIGNED NOT NULL,

! balance!! DECIMAL(15, 4),

! ! ! ! ! INDEX (balance)

)

Wednesday, March 16, 2011

VIEWING INDEXES

To see the indexes defined on a table:

SHOW INDEX FROM table

Try:

SHOW INDEX FROM movie;

Wednesday, March 16, 2011

1) Create indexes on the actor and director tables for the *_id
columns. Does it make sense to have an index for each field
separately, or one combined index? Justify your answer.

2) Browse the documentation on creating indexes and some of the
advanced topics presented therein.

LAB

Wednesday, March 16, 2011

EXPLAIN

In a DBA’s lifelong quest to tune SELECT queries, it is often
helpful to see what the MySQL optimizer is doing.

This is what the EXPLAIN command does:

EXPLAIN select_statement

Example:

EXPLAIN SELECT * FROM movie;

Wednesday, March 16, 2011

EXPLAIN OUTPUT

Section 7.2.2 covers the output in detail, but in short form:

Select type - categorizes select

Table - name of table being explained

The order indicates MySQL's read order

Remember, the FROM clause does not specify order

The order is chosen by MySQL's built-in optimizer, otherwise
can be “hinted”

Wednesday, March 16, 2011

EXPLAIN OUTPUT

Type - join type; how efficiently MySQL scans, ordered from best
to worst:

system – fastest type

eq_ref - “=” referenced by a primary key or unique key (1 row)

ref - “=” by non-unique key (multiple rows)

range - references by <> or complex ranges

index

ALL - full table scan – slowest type

Wednesday, March 16, 2011

EXPLAIN OUTPUT

Possible keys - which columns the optimizer could have used
as indexes

Key - index MySQL actually selected

Key length - used key length in bytes

Check expected length is used for multiple column indexes

Ref - the column or constant, key is matched against

Nulls in these columns indicate they are targets for
improvement

Wednesday, March 16, 2011

EXPLAIN OUTPUT

Rows - estimation of rows read

Extra – extra information

using index - A covering index is used – a good thing!

using where - a where clause is used for filtering

using filesort - external sort is used

using temporary - temporary table will be used

Wednesday, March 16, 2011

EXPLAIN

The output from EXPLAIN can be analyzed to find:

Candidates for indexes, as scans are bad!

Possible query rewriting, maybe even breaking into multiple
queries in some cases.

Playing with join ordering.

See section 7.2.1 for a preliminary discussion of optimization
techniques for EXPLAIN output, and google for further details.

Wednesday, March 16, 2011

1) Put together a few SELECT statements, at least one or two
including joins. Use EXPLAIN to see how the optimizer would
execute your queries.

2) Bonus: Try to create some indexes that improve your execution
plan reported by EXPLAIN.

3) Bonus bonus: Write a short script to insert a few hundred
thousand fake records into the MovieCollection database. Then
experiment with EXPLAIN and indexing to boost search
performance.

LAB

Wednesday, March 16, 2011

QUERY PROFILER

Way beyond a simple EXPLAIN, the query profiler can provide
exceptionally detailed metrics on the actual execution of a
statement.

Shows resource usage of the execution of a query

Introduced in mysql-server 5.0.37

Run on a per-session basis

Stores results in information_schema.PROFILING, a memory
table unique to the session which is destroyed at disconnect

Wednesday, March 16, 2011

ENABLING PROFILING

To enable the query profiler, just set a session variable:

SET profiling = 1;

The profiler has a finite set of queries it can track data on:

15 queries saved by default

Max is 100

SET profiling_history_size = 100

Wednesday, March 16, 2011

USING THE PROFILER

To see all stored profiles:

SHOW PROFILES;

And to view the metrics on a given query id:

SHOW PROFILE type FOR QUERY query_id

Where type is one of the following...

Wednesday, March 16, 2011

PROFILE TYPES

ALL – all information

BLOCK IO – disk I/O mostly

CONTEXT SWITCHES – (in)voluntary context switches

CPU – CPU time, both system and user

IPC – counts for msgs sent and received

MEMORY – doesn’t work

PAGE FAULTS – counts for major/minor page faults

SOURCE – shows functions from source code

SWAPS – swap counts

Wednesday, March 16, 2011

1) Enable profiling for your mysql instance.

2) Experiment with a few queries and familiarize yourself with the
profiler output. Research a bit into the documentation for the
profiler and the current limitations.

LAB

Wednesday, March 16, 2011

ANALYZE

The ANALYZE statement tells the server to re-analyze an index,
computing a new key distribution and storing this information in
the index summary.

The key distribution is used by the optimizer in deciding the
order for JOIN’s connected with something besides a constant.

What?!

Yeah, I know. Short of a looong discussion on index design,
suffice it to say that performing a periodic ANALYZE on a very
dynamic table will improve the optimizer’s performance.

Wednesday, March 16, 2011

ANALYZE SYNTAX

The syntax is simple:

ANALYZE TABLE table

Wednesday, March 16, 2011

OPTIMIZE

As data is deleted and updated in a database, holes start to form
in the underlying storage due to the changes.

Normally, the storage engines continue refilling most of the
holes, but this creates a largely fragmented table.

The OPTIMIZE TABLE statement asks the storage engine to
clean house:

OPTIMIZE TABLE table

Wednesday, March 16, 2011

SLOW QUERIES

All of this talk about improving query performance.. If only there
were some way to easily and quickly identify these slow queries..

Oh wait, there is! That’s what the slow query log is used for!

Wednesday, March 16, 2011

SLOW QUERIES

The slow query log is not enabled by default. To enable it, add
the following to /etc/my.cnf under the [mysqld] section:

log-slow-queries=file

long_query_time=seconds

Records all queries taking longer than long_query_time to
execute. The default is 10 seconds.

These queries are often prime candidates for optimization!

Use mysqldumpslow to summarize the log file.

Wednesday, March 16, 2011

1) Analyze, then optimize all tables in MovieCollection.

2) Enable the slow query log on your server, then simulate some
slow queries using the SLEEP(seconds) function.

3) Use mysqldumpslow to view a report on your “slow” queries.

LAB

Wednesday, March 16, 2011

slideshow.end();

Wednesday, March 16, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

