
SQL BASICS
SELECT * FROM movie;

Tuesday, March 15, 2011

SQL

The Structured Query Language is a powerful tool for
interfacing with RDBMS’s.

SQL is not the most straightforward language, though, as the
syntax is strict, and the wording a little foreign for first time
users.

We will explore SQL by using it to create the Movie database
designed earlier, then add and manage some records within
the new database.

Tuesday, March 15, 2011

CREATE

The first command to cover is the CREATE statement.

CREATE can be used to create a number of different RDBMS
entities. A few examples:

CREATE DATABASE

CREATE TABLE

CREATE VIEW

CREATE INDEX

Tuesday, March 15, 2011

CREATE

We first need to create a database container for our Movie
Collection project:

CREATE DATABASE MovieCollection;

The name is case sensitive, so we shall use capital letters to
denote each word.

Database naming is a personal or organizational policy
decision. MySQL truly does not care what the name is, so long
as it follows the rules laid out in the documentation “Schema
Object Names”. Speaking of...

Tuesday, March 15, 2011

DOCUMENTATION!
AND LAB!

Now is a good time to learn about the vast and excellent
documentation available for the MySQL system.

http://dev.mysql.com/doc

Learn it, Live it, Love it

Take some time now to peruse the documentation and familiarize
yourself with the layout of the site. Maybe read up on the mysql

or mysqladmin command.

Find the section on Schema Object Names and browse through it.

Tuesday, March 15, 2011

USING A DATABASE

Now that the MovieCollection database has been created, we
need to let the mysql client know that is the database we want to

work on. This is done with the mysql client “use” command.

But first, let’s see what database we’re currently using:

SELECT DATABASE();

Null? That’s not what we want...

use MovieCollection;

SELECT DATABASE();

Tuesday, March 15, 2011

CREATE TABLE

With a working database, we’re ready to create our tables.

Creating tables involves naming the table and describing the
various column names and types. Generic syntax:

CREATE TABLE table_name (

! column_name column_type_and_parameters,

! ...

)

Tuesday, March 15, 2011

MOVIE TABLE

CREATE TABLE movie (

! id!! ! ! INT UNSIGNED NOT NULL AUTO_INCREMENT,

! ! ! ! ! PRIMARY KEY (id),

! title!! ! VARCHAR(50) NOT NULL,

! acquired!! DATETIME,

! borrow_id! INT

);

Tuesday, March 15, 2011

1) Create the rest of the tables for the Movie Collection
database.

2) Verify all of your tables by comparing to the Movie
Collection database schema handout.

3) If you run into problems, ask me for the schema creation
handout for guidance.

LAB

Tuesday, March 15, 2011

INSERT

Now that we have a database and some tables to work with,
let’s start adding data! This is accomplished with the
INSERT statement:

INSERT INTO table_name VALUES (...);

There are several variations to the INSERT statement, so
let’s take an example insertion and rewrite it in several
ways...

Tuesday, March 15, 2011

INSERT VARIATIONS

INSERT INTO movie

VALUES (NULL, ‘Hackers’, NOW(), NULL);

INSERT INTO movie (title, acquired)

VALUES (‘Hackers’, NOW());

INSERT INTO movie

SET title=‘Hackers’, acquired=NOW();

Tuesday, March 15, 2011

1) Insert the data presented in the handout for the movie
and person tables. You can ignore the other tables for
now, as that’s too much tedious typing. :)

Make sure each row goes in successfully, and if you make
a mistake, ignore it for now - in a few slides you’ll learn
how to correct it.

LAB

Tuesday, March 15, 2011

SELECT

With data in the database, now the question is how to view
it. This is where the SELECT statement comes in.

SELECT columns FROM table

The SELECT statement is a very powerful tool, and there is
quite a bit to it. A simple example:

SELECT * FROM movie;

This will return all columns for every row in movie

Tuesday, March 15, 2011

WHERE CLAUSE

The bare SELECT statement is occasionally useful for a full
dump of the information in a table, but normally, we are
only interested in specific rows. Filtering the result set in a
SELECT statement is handled via the WHERE clause:

SELECT columns FROM table WHERE conditions

Example:

SELECT * FROM person WHERE first = ‘John’;

Tuesday, March 15, 2011

WHERE CONDITIONS

The conditions for a WHERE clause can be simple or
extraordinarily complex.

Let’s spend a few minutes on our live systems to experiment
with and discover various SELECT statements and WHERE
clauses.

Column aliases
Basic operators and functions
Booleans
Basic pattern matching

Tuesday, March 15, 2011

ORDERING

SELECT statements also support the ability to order results,

via the ORDER BY clause:

SELECT columns FROM table ORDER BY
specification

Example:

SELECT * FROM person ORDER BY last ASC;

This will return all columns for all rows from the person table
ordered by the column ‘last’ in ascending order.

Tuesday, March 15, 2011

LIMITING RESULTS

Sometimes a user is only interested in seeing a subset of the
results. This is achieved with the LIMIT clause:

SELECT columns FROM table LIMIT number

Example:

SELECT * FROM person LIMIT 5;

This will return 5 rows from the person table (no guarantee
on which rows are returned! Why?)

Tuesday, March 15, 2011

1) Look through the MySQL documentation on the SELECT
statement. Can you start to see the power and complexity
of this command?

2) How many people in the database have a last name that
starts with ‘B’? Do this with a proper SELECT statement

and WHERE clause, don’t count by hand!

3) Bonus: Create a listing of people where the output is of the
form “Last, First Middle”. For example: “Jolie, Angelina”.
Look up the CONCAT functions, and possibly IFNULL.

LAB

Tuesday, March 15, 2011

UPDATING DATA

With the foundation of WHERE clauses, the final two major SQL
statements can be explored: UPDATE and DELETE.

To change information in a table, one makes use of the UPDATE
statement:

UPDATE table SET name=value... WHERE conditions

Example:

UPDATE movie SET acquired=NOW()

WHERE title = ‘Tron’;

Tuesday, March 15, 2011

DELETING DATA

Finally, to remove rows from a table, use the DELETE statement:

DELETE FROM table WHERE conditions

Example:

DELETE FROM person WHERE last LIKE ‘B%’;

This will delete every row in person where the column ‘last’
begins with the letter ‘B’.

Tuesday, March 15, 2011

DELETING
STRUCTURES
When a table, database or any other structure in the RDBMS needs
to be completely removed, this is done with the DROP statement:

DROP type name

Example:

DROP TABLE genre;

This will completely remove the genre table and all data in it.
This is irreversible! Be very careful with the DROP
statement!

Tuesday, March 15, 2011

LESS TYPING!

Until this point, we have been typing every command in
manually into the mysql client tool. This gets old.

There is a better way!

source filename

This will read “filename” as a series of SQL commands and run
them in the current mysql session.

A SQL script!

Tuesday, March 15, 2011

1) Drop your MovieCollection database.

2) Go to http://server1.example.com/mysql

3) Download “create-moviedb.sql” and “load-moviedb.sql”

4) Source create-moviedb.sql

5) Source load-moviedb.sql

6) Perform some queries looking at the data. If you wish to
experiment some more with UPDATE, DELETE and DROP, just
repeat steps 4 and 5 when you are done.

LAB

Tuesday, March 15, 2011

JOINS

Now that we have more data in our tables, we can discuss
joins.

A join occurs when data is pulled from more than one table.
The rows from each table are then joined together somehow,
generally by matching values.

Consider the actor, movie and person tables. What if we
wanted to produce a listing of movie title and actor name. Can
it be done?

Of course!

Tuesday, March 15, 2011

JOINS

SELECT movie.title AS Title,

CONCAT_WS(‘’, person.first, ‘ ‘, person.last) AS Name

FROM movie INNER JOIN actor ON

! actor.movie_id = movie.id

INNER JOIN person ON

! actor.person_id = person.id

ORDER BY Title ASC;

Think about that one for a minute...

Tuesday, March 15, 2011

JOINS

The rabbit hole that is joining goes on very, very deep. There are
inner joins, outer joins, left and right joins and more.

A good book and some experimentation is the best way to master
these more advanced topics. The MovieCollection database, with
some additional rows could serve as an excellent learning ground
should you be interested.

Tuesday, March 15, 2011

1) Come up with a single SELECT statement which reports
each movie title and it’s genres.

2) Bonus: come up with a SELECT statement which shows
director first and last names and what genre’s they have
developed.

LAB

Tuesday, March 15, 2011

slideshow.end();

Tuesday, March 15, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

