
LINUX
TROUBLESHOOTING

Or, what to do when the $h1t hits the fan

ABOUT THE CLASS

24 hours over three days

Very Short Lecture and Lots of Labs

Hours:

8:30am - 5:00pm

Lunch: 11:45am - 1:00pm

ABOUT THE
INSTRUCTOR

Nathan Isburgh

instructor@edgecloud.com

Unix user 15+ years, teaching it 10+ years

RHCE, CISSP

Forgetful, goofy, patient :)

ABOUT THE COLLEGE

Rackspace Parking Sticker = good to go

Breaks between each lab

Breakroom downstairs - labeled “Laundry”

Sodas - bottles in machine ($1.25) or cans in mini-fridge ($0.50)

Cafeteria

Do not speed!

No smoking anywhere. Can only smoke sitting in car.

ABOUT THE STUDENTS

Name?

Time served, I mean employed, at Rackspace?

Department?

Unix skill level?

How would you teach someone to troubleshoot?

EXPECTATIONS OF
STUDENTS

Strong foundation in basic Linux use and administration

Ask Questions!

Complete the labs

Email if you’re going to be late/miss class

Have fun

Learn something

OVERVIEW

Troubleshooting is a thorough methodology used to track
down the cause of problem.

Keywords: thorough and methodology

Without a thorough and exhaustive approach, the issue
might be overlooked

Without a strong and methodical approach, the issue may be
misdiagnosed

TROUBLESHOOTING
KEYS

Most Important: Only change one thing at a time

Check #1 most likely cause: You

Check logs for error messages

After that, check configuration and permissions

If all else fails, slowly, piece by piece, start removing
complexity from the system to narrow down the problem area.

DOCUMENT EVERYTHING

LOGS

One of the easiest places to find the cause of a problem is in
the log files.

Log files store informational messages from software. The
types of messages include debug information, status
information, warnings, errors and more.

Some applications manage their own log files. Others use
the system-wide logging package...

SYSLOG

syslog - The system logger. A framework consisting of a library, a
daemon, a configuration file and logs.

Any application can use the library and log messages through
syslog with simple function calls.

Log messages consist of 3 parts:

Facility

Level

Message

SYSLOG

The facility describes what part of the operating system
generated the message, and is selected by the software:

auth, authpriv, cron, daemon, ftp, kern, lpr, mail, news,
security, syslog, user, uucp, local0-local7

The level represents the importance of the message, and is
also chosen by the software:

emergency, alert, critical, error, warning, notice, info,
debug

/ETC/SYSLOG.CONF

/etc/syslog.conf defines where all of the log messages should go.
Destinations include files, screens of logged in users, console, other syslog
servers.

Basic file format:

facility.level destination

Examples:

*.err /dev/console

mail.* /var/log/maillog

*.info;mail.none;authpriv.none /var/log/messages

/VAR/LOG

maillog: messages from the email subsystem

secure: authentication and security messages

cron: cron messages

boot.log: boot messages

messages: catch-all

LOGS

As mentioned earlier, not all software uses the syslog
framework to handle it’s logging. Quite a bit of software
manages it’s own logs.

This can make it difficult to track down all of the log
locations on an unfamiliar system. The best way to handle
this is to start from the init scripts...

LOCATING
APPLICATION LOGS

To track down the log file location for an application, you need
to find it’s configuration file so you can see where the logs are
being written.

Of course, finding the configuration file might be just as
difficult, so it’s best to start at the source.

init starts all of the system services, and so there is an init
script somewhere that is starting up the application in
question.

The init script almost always references the configuration file

LOCATING
APPLICATION LOGS

Now that the configuration file location is known, it only
takes a few moments to scan through it and find out where
logs are being written.

As for the format of the log file, that’s completely dependent
on the application. Some will be similar to syslog, others,
like Apache or Qmail, will be completely foreign looking.

Fortunately, a little common sense and judicious application
of Google Ointment will get the information you seek.

WHEN LOGS FAIL...

Looking through logs is all fine and dandy, but really that’s a
best case scenario. Your software and hardware rarely come
out and announce problems and solutions in the log files.
No, it’s not that easy!

More often, users will encounter symptoms of a problem,
and you, as the BOFH (hopefully not yet!), will be tasked
with finding and fixing the issue.

TROUBLESHOOTING
TOOLS

Troubleshooting can be a mystical art, and fully exploring
it’s details is best left to a class in it’s own right.

For now, a discussion of several tools to help the process of
troubleshooting will have to suffice.

UPTIME

uptime: Reports system uptime along with load averages.

Load Average: Average number of processes in run queue that
are blocked.

uptime reports three values: the load averaged over the last 1

minute, 5 minutes and 15 minutes. This is useful to get an
idea of the load trend on the system.

Example:

[root@dev1 ~]# uptime
 16:09:55 up 682 days, 10:11, 1 user, load average: 0.00, 0.01, 0.00
[root@dev1 ~]#

FREE

free: reports on memory and swap usage

buffers: I/O buffers, directory cache

cached: filesystem cache (data)

Example:

[root@dev1 ~]# free
 total used free shared buffers cached
Mem: 262316 214228 48088 0 1168 41728
-/+ buffers/cache: 171332 90984
Swap: 524280 74564 449716
[root@dev1 ~]#

W

w: Displays an uptime report, followed by a breakdown of all
logged-in users and what process they are running

JCPU: Combined CPU time of all processes attached to the
terminal (foreground and background)

PCPU: CPU time of foreground process, listed in “what” column

Example:

[root@dev1 ~]# w
 16:26:42 up 682 days, 10:28, 2 users, load average: 0.02, 0.05, 0.02
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root pts/0 216-110-93-126.s 16:00 3:57 0.01s 0.01s -bash
root pts/9 216-110-93-126.s 16:22 0.00s 0.01s 0.00s w
[root@dev1 ~]#

VMSTAT

vmstat: Snapshot report covering several primary statistics.

procs: number of running and blocked processes

swap: swapped in and swapped out blocks of memory, per second

io: blocks in and blocks out read/written per second

system: interrupts and context switches per second

cpu: user, system, idle, wait and time-stolen from a VM

[root@dev1 ~]# vmstat
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 0 0 74564 3608 4456 70156 0 0 0 2 0 0 0 0 100 0 0
[root@dev1 ~]#

TOP

top: Self-updating tool displays combination summary at top,

followed by ordered list of processes. Fully customizable.

The summary includes uptime information, memory
breakdowns, CPU utilization and process state summaries

The process display can be customized and sorted to suit need

top - 16:39:32 up 682 days, 10:41, 2 users, load average: 0.01, 0.00, 0.00
Tasks: 118 total, 1 running, 116 sleeping, 1 stopped, 0 zombie
Cpu(s): 0.1%us, 0.0%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.1%st
Mem: 262316k total, 258024k used, 4292k free, 7380k buffers
Swap: 524280k total, 74564k used, 449716k free, 67808k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1 root 15 0 10316 648 592 S 0 0.2 0:06.24 init
 2 root RT 0 0 0 0 S 0 0.0 0:04.88 migration/0
 3 root 34 19 0 0 0 S 0 0.0 0:00.19 ksoftirqd/0

DF

df: lists filesystem utilization

Breaks down size and use information for each mounted
filesystem

-h is useful option to display in “human-friendly” format

[root@dev1 ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 9.4G 7.2G 1.8G 81% /
none 129M 0 129M 0% /dev/shm
[root@dev1 ~]#

LDD, LDCONFIG

ldd: List library dependencies

ldconfig: Update library location database

/etc/ld.so.conf and /etc/ld.so.conf.d/*.conf
for list of pathnames to search for libraries, creates
database for dynamic linker

[root@dev1 ~]# ldd /bin/bash
! libtermcap.so.2 => /lib64/libtermcap.so.2 (0x00002ac044572000)
! libdl.so.2 => /lib64/libdl.so.2 (0x00002ac044775000)
! libc.so.6 => /lib64/libc.so.6 (0x00002ac044979000)
! /lib64/ld-linux-x86-64.so.2 (0x00002ac044357000)
[root@dev1 ~]# cat /etc/ld.so.conf.d/mysql-x86_64.conf
/usr/lib64/mysql
[root@dev1 ~]# ldconfig
[root@dev1 ~]#

ULIMIT

ulimit: Sets resource limits

Can limit open files, memory use, cpu time, subprocesses
and more.

[root@dev1 ~]# ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
max nice (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 2112
max locked memory (kbytes, -l) 32
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
max rt priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 2112
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
[root@dev1 ~]#

IOSTAT

iostat: IO statistics report

Part of the sysstat package; not always installed

Allows for drilldown into the IO system to view real time
metrics on IO operations per filesystem

[root@dev1 ~]# iostat -x
Linux 2.6.18-xen (dev1) ! 12/10/09

avg-cpu: %user %nice %system %iowait %steal %idle
 0.05 0.00 0.00 0.03 0.07 99.84

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda1 0.00 1.68 0.01 0.55 0.14 17.83 32.12 0.03 54.01 2.89 0.16
sda2 0.00 0.00 0.00 0.00 0.01 0.01 35.26 0.00 80.51 4.95 0.00

[root@dev1 ~]#

LSUSB

lsusb: List USB bus

Generates a listing of devices on the USB bus

Consider -v option for detailed information

[root@localhost ~]# lsusb
Bus 003 Device 001: ID 0000:0000
Bus 004 Device 001: ID 0000:0000
Bus 005 Device 001: ID 0000:0000
Bus 001 Device 001: ID 0000:0000
Bus 002 Device 001: ID 0000:0000

LSPCI

lspci: List PCI bus

Generates a listing of devices on the PCI bus

Consider -v option for detailed information

[root@localhost ~]# lspci
00:00.0 Host bridge: Intel Corporation 82945G/GZ/P/PL Memory Controller Hub (rev 02)
00:02.0 VGA compatible controller: Intel Corporation 82945G/GZ Integrated Graphics Controller (rev 02)
00:1b.0 Audio device: Intel Corporation N10/ICH 7 Family High Definition Audio Controller (rev 01)
00:1c.0 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 1 (rev 01)
00:1c.1 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 2 (rev 01)
...

HEAVY ARTILLERY

Now to discuss some of the more powerful troubleshooting
tools

Not for the faint of heart :)

/PROC/*

The /proc folder contains copious amounts of information useful
for troubleshooting. Some examples:

/proc/meminfo: Memory utilization breakdown

/proc/devices: Mapping major numbers to drivers

/proc/dma: dma channel assignments

/proc/ioports: io port assignments

See the manpage for proc for more information and descriptions

/PROC/*

Also in the /proc folder is detailed information on every
process on the system.

Details on process status, environment, commandline,
and more can be obtained

Read the proc manpage - tons of information available

through /proc

DEBUGFS

debugfs: Very powerful filesystem debugging tool.

Allows direct visualization and manipulation of the
filesystem internals

Extremely powerful, extremely dangerous. Duh!

STRACE

strace: Traces each library call a process makes

Extremely useful to see what a process is doing

Can find errors, bugs, permission issues and more

Let’s play with it for a few minutes...

slideshow.end();

