LINUX
TROUBLESHOOTING

Or, what to do when the $hit hits the fan

ABOUT THE CLASS

e 24 hours over three days
e Very Short Lecture and Lots of Labs
e Hours:

e 8:30am - 5:00pm

® Lunch: 11:45am - 1:00pm

ABOUT THE
INSTRUCTOR

e Nathan Isburgh

e instructor@edgecloud.com

e Unix user 15+ years, teaching it 10+ years
e RHCE, CISSP

e Forgetful, goofy, patient :)

ABOUT THE COLLEGE

® Rackspace Parking Sticker = good to go

® Breaks between each lab

® Breakroom downstairs - labeled “Laundry”

e Sodas - bottles in machine ($1.25) or cans in mini-fridge ($0.50)
o Cafeteria

® Do not speed!

® No smoking anywhere. Can only smoke sitting in car.

ABOUT THE STUDENTS

e Name?

e Time served, I mean employed, at Rackspace?
® Department?

e Unix skill level?

e How would you teach someone to troubleshoot?

EXPECTATIONS OF
STUDENTS

e Strong foundation in basic Linux use and administration
e Ask Questions!

e Complete the labs

e Email if you're going to be late/miss class

e Have fun

e Learn something

OVERVIEW

e Troubleshooting is a thorough methodology used to track
down the cause of problem.

e Keywords: thorough and methodology

e Without a thorough and exhaustive approach, the issue
might be overlooked

e Without a strong and methodical approach, the issue may be
misdiagnosed

TROUBLESHOOTING
KEYS

® Most Important: Only change one thing at a time
® Check #1 most likely cause: You

® Check logs for error messages

e After that, check configuration and permissions

o If all else fails, slowly, piece by piece, start removing
complexity from the system to narrow down the problem area.

e DOCUMENT EVERYTHING

e One of the easiest places to find the cause of a problem is in
the log files.

e Log files store informational messages from software. The
types of messages include debug information, status
information, warnings, errors and more.

e Some applications manage their own log files. Others use
the system-wide logging package...

SYSLOG

e syslog - The system logger. A framework consisting of a library, a
daemon, a configuration file and logs.

e Any application can use the library and log messages through
syslog with simple function calls.

e Log messages consist of 3 parts:
® Facility
e Level

e Message

SYSLOG

e The facility describes what part of the operating system
generated the message, and is selected by the software:

e auth, authpriv, cron, daemon, ftp, kern, Ipr, mail, news,
security, syslog, user, uucp, localo-localy

e The level represents the importance of the message, and is
also chosen by the software:

e emergency, alert, critical, error, warning, notice, info,
debug

/ETC/SYSLOG.CONF

/etc/syslog.conf defines where all of the log messages should go.
Destinations include files, screens of logged in users, console, other syslog
Servers.

Basic file format:

o facility.level destination

Examples:

s *.err /dev/console

o mail.* /var/log/maillog

o *.info;mail.none;authpriv.none /var/log/messages

/VAR/LOG

maillog: messages from the email subsystem
secure: authentication and security messages
cron: cron messages

boot. log: boot messages

messages: catch-all

® As mentioned earlier, not all software uses the syslog
framework to handle it’s logging. Quite a bit of software
manages it’s own logs.

e This can make it difficult to track down all of the log
locations on an unfamiliar system. The best way to handle
this is to start from the init scripts...

LOCATING
APPLICATION LOGS

® To track down the log file location for an application, you need
to find it’s configuration file so you can see where the logs are
being written.

® Of course, finding the configuration file might be just as
difficult, so it’s best to start at the source.

e init starts all of the system services, and so there is an init
script somewhere that is starting up the application in
question.

e The init script almost always references the configuration file

LOCATING
APPLICATION LOGS

e Now that the configuration file location is known, it only
takes a few moments to scan through it and find out where
logs are being written.

e As for the format of the log file, that’s completely dependent
on the application. Some will be similar to syslog, others,
like Apache or Qmail, will be completely foreign looking.

e Fortunately, a little common sense and judicious application
of Google Ointment will get the information you seek.

WHEN LOGS FAIL...

e Looking through logs is all fine and dandy, but really that’s a
best case scenario. Your software and hardware rarely come
out and announce problems and solutions in the log files.
No, it’s not that easy!

e More often, users will encounter symptoms of a problem,
and you, as the BOFH (hopefully not yet!), will be tasked
with finding and fixing the issue.

TROUBLESHOOTING
TOOLS

e Troubleshooting can be a mystical art, and fully exploring
it’s details is best left to a class in it’s own right.

e For now, a discussion of several tools to help the process of
troubleshooting will have to suffice.

UPTIME

o uptime: Reports system uptime along with load averages.

e Load Average: Average number of processes in run queue that
are blocked.

o uptime reports three values: the load averaged over the last 1
minute, 5 minutes and 15 minutes. This is useful to get an
idea of the load trend on the system.

e Example:

» free: reports on memory and swap usage
e buffers: I/O buffers, directory cache
e cached: filesystem cache (data)

e Example:

e w: Displays an uptime report, followed by a breakdown of all
logged-in users and what process they are running

® JCPU: Combined CPU time of all processes attached to the
terminal (foreground and background)

® PCPU: CPU time of foreground process, listed in “what” column

e Example:

VMSTAT

e vmstat: Snapshot report covering several primary statistics.
procs: number of running and blocked processes
swap: swapped in and swapped out blocks of memory, per second
io: blocks in and blocks out read/written per second
system: interrupts and context switches per second

cpu: user, system, idle, wait and time-stolen from a VM

» top: Self-updating tool displays combination summary at top,
followed by ordered list of processes. Fully customizable.

e The summary includes uptime information, memory
breakdowns, CPU utilization and process state summaries

e The process display can be customized and sorted to suit need

o df: lists filesystem utilization

e Breaks down size and use information for each mounted
filesystem

e -h is useful option to display in “human-friendly” format

1dd: List library dependencies

ldconfig: Update library location database

/etc/ld.so.conf and /etc/1ld.so.conf.d/*.conf
for list of pathnames to search for libraries, creates
database for dynamic linker

ulimit: Sets resource limits

Can limit open files, memory use, cpu time, subprocesses
and more.

ulimit -a
0
unlimited

unlimited

stack
cpu time
max user proce E: 2112
virtual <by unlimited
file lo unlimited

unlimited

IOSTAT

o iostat: IO statistics report
e Part of the sysstat package; not always installed

e Allows for drilldown into the IO system to view real time
metrics on 10 operations per filesystem

o lsusb: List USB bus
o Generates a listing of devices on the USB bus

e Consider -v option for detailed information

* 1spci: List PCI bus

e Generates a listing of devices on the PCI bus

o Consider -v option for detailed information

HEAVY ARTILLERY

e Now to discuss some of the more powerful troubleshooting
tools

e Not for the faint of heart :)

/PROC/*

® The /proc folder contains copious amounts of information useful
for troubleshooting. Some examples:

e /proc/meminfo: Memory utilization breakdown
/proc/devices: Mapping major numbers to drivers
/proc/dma: dma channel assignments
/proc/ioports: io port assignments

See the manpage for proc for more information and descriptions

/PROC/*

® Also in the /proc folder is detailed information on every
process on the system.

e Details on process status, environment, commandline,
and more can be obtained

e Read the proc manpage - tons of information available
through /proc

DEBUGEFS

e debugfs: Very powerful filesystem debugging tool.

e Allows direct visualization and manipulation of the
filesystem internals

o Extremely powerful, extremely dangerous. Duh!

STRACE

e strace: Traces each library call a process makes
e Extremely useful to see what a process is doing
e Can find errors, bugs, permission issues and more

o Let’s play with it for a few minutes...

slideshow.end();

