
LINUX+
40 hour prep course for CompTIA Linux+ Certification

TECH SPECS

40 hours, lecture/lab format

Hours: 8:30 - 5:00

Lunch: 11:45 - 1:00

Breaks every hour or so.. :)

ABOUT THE
INSTRUCTOR

Nathan Isburgh

instructor@edgecloud.com

Unix user 15+ years, teaching it 10+ years

RHCE, CISSP

Forgetful, goofy, patient :)

ABOUT THE COLLEGE

Breakroom downstairs - labeled “Laundry”

Sodas - Machine ($1.25) or mini-fridge ($0.50)

Cafeteria

Do not speed!

No smoking anywhere. Can only smoke sitting in car.

ABOUT THE STUDENTS

Name?

Time served, I mean employed, in tech industry?

Department?

Unix skill level?

What most interests you about Linux?

EXPECTATIONS OF
STUDENTS

Basic foundation in computer use

Ask Questions!

Complete the labs

Email if you’re going to be late/miss class

Have fun

Learn something

slideshow.end();

LINUX
The Big Picture

http://www.gnu.org/graphics/gnu-slash-linux.html

FIRST: UNIX

1965: MULTICS - MIT, GE and Bell Labs - Time sharing of
computer systems. Abandoned in 1969.

1969: Ken Thompson, Dennis Ritchie, Brian Kernighan
(from MULTICS) continued playing. Developed UNIX in
1969, which ran on a DEC PDP-7.

1972: Dennis Ritchie develops C programming language at
Bell Labs. Revolutionary step. Used on UNIX.

1973: UNIX rewritten in C! Portability achieved!

MORE UNIX

1970’s-1980’s: AT&T releasing versions, selling source code
licenses to other entities such as Sun Microsystems, Microsoft
(you read that right), SCO, BSD and others. Wild times.
Segued into the “Unix Wars”

1989: System V Release 4 (SVR4) - de facto standardization of
UNIX (at least, so far as AT&T and Sun were concerned). A
combination of features from from Xenix, BSD, SunOS, and
System V.

Since then, more fighting, struggling, developing. It’s been fun.
Spend a couple hours in wikipedia for the sordid details. :)

LINUX?

All of this leads us to Linux!

A brief history...

A long time ago (in computer years), in a galaxy not so far
away (Finland), there lived a man. Not just any man! This
man was different, for he was a super nerd.

His name was Linus, and he was taking an operating
systems course from Professor Andrew Tannenbaum.

MINIX! Mini-UNIX

LINUX

UNIX not cheap or readily available. Certainly not on this cheap
new hardware, the Intel x86 family.

Linus ported MINIX to PC hardware and renamed it to Linux.
Released first version, including the source code, in 1991.

What? Source code? And why’d he do that?

Richard Stallman! The Open Source Movement!

1983: GNU

1985: Free Software Foundation.

Center of machine

Scheduler, memory
manager, device drivers

Shared software routines,
system calls

User level software

Applications

OVERVIEW

Libraries

Kernel

End User

xkcd.com

Hardware

DISTRIBUTIONS

The “Linux” part of Linux is the kernel and supporting
drivers. By itself, it does not represent a complete operating
system.

Thousands of open source projects combine their powers to
form the One True Operating System we know as Linux. :)

Distributors pick and choose from all of this software,
combine it with a Linux kernel and package it up into
something called a distribution. Common ones include...

DISTRIBUTIONS

Redhat: One of the oldest and most popular. Originally
offered two levels: personal and enterprise. Decided to focus
on enterprise offerings, so dropped Red Hat Personal and
created the Fedora Project, a community driven entity to
produce a personal distribution of Linux.

Fedora: Aims to release quarterly “Core” distributions.
Focuses on up to date software packages and kernels.

CentOS: Takes Redhat Enterprise Linux, strips the branding
and provides free version.

DISTRIBUTIONS

Debian: Popular, flexible, apt packaging system

Ubuntu: Popular for desktops, easy to use, based on Debian

Gentoo: Focus on performance through targeted, on-the-fly
compilation. Unique, advanced, powerful.

Slackware: One of the first distributions. Meant for
advanced users - focus on stability and simplicity.

100’s of distributions! See http://www.linux.org/dist/

LINUX IS...

Multiuser

One of the primary goals of
UNIX was to maximize the
utilization of the computer
(they weren’t cheap then!)

The concept allows
multiple users to perform
tasks at the same time

LINUX IS...

Multitasking

Allowing multiple users
necessitates the ability to
do multiple things at once.

Implemented through a
complex scheduling system

LINUX USES

Linux is used in thousands of ways:

Servers, workstations

Routers, network gear

Embedded systems, monitoring stations

Supercomputers

slideshow.end();

HARDWARE

freedigitalphotos.net

CORE COMPONENTS

Motherboard

CPU

RAM

Expansion slots

http://en.kioskea.net/contents/pc/carte-mere.php3

CORE COMPONENTS

Hard drive

Removable media drives

Power supply

Case

PERIPHERALS

Keyboard

Mouse

Monitor/Video

Sound

Printer

RAID ARRAYS

Redundant Array of Inexpensive Disks

Stringing together two or more drives

Provides mix of performance and reliability improvements

Configured by level...

RAID LEVELS

0 (Spanning): Drives simply combined, one after another, to
form one large, continuous storage space. No performance
or reliability advantages. Used to get large amounts of
storage space for cheap.

0 (Striping): Drives are combined into one large storage
space, but the data is split up and striped across the disks.
Provides improved read and write performance through
parallel operations. Still no reliability benefit.

RAID LEVELS

1 (Mirroring): Each drive in the set is a complete copy of the
data. Read performance benefit through parallel read
operations. Exceptional reliability benefit through
redundancy. Storage limited to size of smallest member.

5 (Stripe w/ parity): Most common. Similar to Striped RAID
0, but adds parity information, allowing for improved
reliability. Minimum 3 members to operate, but can tolerate
a drive failure without data loss! Improved performance
through parallel operations.

RAID LEVELS

6 (Stripe w/ double parity): Same as RAID5, but with
doubled parity information, tolerating up to two drive
failures in set.

Levels are often combined (nested) to get the best of
different levels: 01, 10, 15, 50, 51, 16, 60, 61

Nested levels are expensive to implement, but can provide
extremely high reliability and performance numbers.

Common nested levels include...

RAID LEVELS

10 (Stripe Set across mirrors): A set that stripes data across
two or more RAID1 mirrors.

50 (Striped Stripe with Parity Set): Data is striped across
two or more RAID5 sets.

51 (Mirrored Strip with Parity Set): Data is mirrored across
two or more RAID5 sets.

BACKUP MEDIA

Optical discs: Simple, tough, cheap, small. Limited size.
Easy to use.

Hard drives: Expensive, sensitive. Rapid restore times. Still
fairly limited size. Easy to use - often a mirror of the data.

Tapes: Cheap, reliable, tough. Huge sizes available. Most
common backup media for any serious need. Generally
requires backup software for managements.

slideshow.end();

LINUX INSTALLATION
Joy!

FROM MEDIA

Generally one of:

DVD

CD

Floppies? (ack!)

FROM NETWORK

Useful for multiple installs

HTTP

FTP

NFS

SMB

Requires a bit more setup

KICKSTART FILES

Answer all of the installation questions

Flat text file - easy to edit

Useful for replicating installation preferences on a massive
scale.

LET’S INSTALL
LINUX!

slideshow.end();

SHELLS
Yeah, the hard part of Linux

THE BIG LOOP

In order to master the shell, you have to understand it’s
inner workings

The first concept is The Big Loop

1. Print prompt, await user input

2. Parse and verify input; on error, loop

3. Perform requested operation (execute command, built-in)

4. Loop

THE BIG LOOP

MORE ON STEP 2

Step 2: parse and verify input

Very important step, includes:

Syntax checking, command identification, metacharacter
substitutions and operations

SYNTAX

<command> [options] [arguments]

Everything is separated with white space

Options are just a special interpretation of arguments,
generally identified with a prefixed hyphen

POSIX options (or long options) use a double hyphen
prefix, and often spell out the option with a word rather than
just a letter (--verbose instead of -v)

QUOTING

Generally, arguments are separated with whitespace, but
sometimes whitespace needs to be part of the argument
itself (spaces in filenames, for example). Consider:

command filename with spaces

Without any guidance, the shell will interpret this input as
a command with 3 arguments.

Quoting is the easiest way to guide the shell in this matter.
There are two forms...

SINGLE QUOTES

Single quotes are the simplest to use:

command ‘filename with spaces’

The quotes let the shell know where an argument starts and
stops (quotes not included), and it doesn’t bother with
what’s between the markers - it is interpreted strictly as data

Hence, this line would be interpreted as a command with
one argument, filename with spaces

DOUBLE QUOTES

Double quotes follow single syntax, but interpret differently:

command “filename with spaces”

The quotes let the shell know where an argument starts and
stops, but the data in between is loosely examined for
metacharacters. More on that in a minute.

So, this line would also be interpreted as a command with
one argument, filename with spaces

METACHARACTERS

A metacharacter is any character that has more than one
meaning or interpretation.

For example, you just learned about two of them: the single
and double quotes. In normal context, they denote
endpoints for arguments, not actual quote characters

But what if you need a quote in your argument value, say a
filename with a single quote like: smith’s

ESCAPING

The quick and simple way to do that is with the escape
metacharacter, the backslash: \

command smith\’s

The escape character tells the shell to interpret the character
following the backslash as a normal character, rather than a
metacharacter

This allows you to use metacharacters as regular characters

BASIC COMMANDS

who: Lists currently logged in users

uptime: Statistics about machine usage and run time

echo: Prints the given arguments to the screen

date: Print current date and time

exit: Terminate current shell session

reset: Reset terminal state to default settings

HIERARCHIES

Data is stored in files

Files are grouped and
organized in Directories,
creating a tree structure

The filesystem begins at
root, represented as: /

The Standard Hierarchy
provides basic organization

WORKING DIRECTORY

Operations within the shell generally gather input from files
and output information to files, so the shell tracks a
“working directory” to ease the file specifications, and have a
default location to output files if one is not provided

pwd: Print Working Directory

cd: Change [working] Directory

PATHNAMES

A pathname specifies the exact location of a file or directory
within the filesystem.

Understanding pathnames is critical to a happy shell life

There are two types of pathnames: absolute and relative

ABSOLUTE PATHNAME

An absolute pathname uses the root of the filesystem to fix
the starting location for the path search.

/etc/passwd

Starting from /, descend into the etc folder, then locate the

file named passwd

The key is the leading slash - exactly fixing the starting point

RELATIVE PATHNAME

Relative pathnames only specify a file’s location with respect
to a working directory. The path is relative to the current
working directory. Relative pathnames never start with a /.

memos/january.txt

From within the current directory (see? the starting point is
the current directory - not always / like for absolute),
descend into the memos folder and locate the file
january.txt

COMPARISON

Absolute Pathnames

Always start with a /

Search starts from /

Always refers to exactly one
file

Relative Pathnames

Never start with a /

Search starts from CWD

Can refer to any number of
files (dependent on CWD)

BASIC COMMANDS

mkdir: Create a new directory

touch: Update modification and access times of given file

spell: Spell check given file (or input on stdin)

mv: Move a file from one location to another (rename)

cp: Copy a file to another location

rm: Remove (delete) a file

ls: Display listing (contents) of a directory

WILDCARDS

Wildcards are another set of metacharacters which provide a
shorthand notation for specifying large groups of files

There are 3 basic pathname wildcards:

*

?

[set]

WILDCARD: *

The * wildcard is the easiest to understand, and most
common

Definition: Match 0 or more characters. Any characters.

Examples:

*

a*

*.txt

WILDCARD: ?

The ? wildcard comes in handy now and again

Definition: Matches exactly 1 character. Can be any
character, but there must be exactly 1.

Examples:

file?.txt

log-????

????*

WILDCARD: [SET]

The bracketed set wildcard can be very useful when
filenames are following a specific pattern

Definition: Match exactly 1 character, character must be
from the set. Great flexibility in specifying the set

Examples:

log-2009-1[012]-*

[a-zA-Z]*

WILDCARD: [SET]

Each desired character can be directly typed into the set:

[012345]

Ranges are acceptable. Starting point must be “less” than
ending point. Starting/ending case must match for letters:

[0-5]

[d-h]

[N-Z]

WILDCARD: [SET]

Mix and match:

[0-9a-zA-Z]

[c-fikmp]

If a hyphen is needed to be part of the set, specify it first:

[-acg0-4]

WILDCARD: [SET]

You can also specify an “anti” set. Anything listed in the set
will not match. Simply start set with !

[!0-9]

If an exclamation mark is needed in a set, specify it
anywhere after the first character:

[0-9!bkg-i]

ENVIRONMENTS

Every piece of running software (a process - more on that
later) has it’s own environment

The environment is simply a collection of key->value pairs

The key is [traditionally capitalized] letters, numbers and
symbols to uniquely identify the variable

The value is a string

ENVIRONMENTS

Examples:

PATH=/usr/local/bin:/usr/bin:/bin:/sbin

HOME=/home/bob

TOTAL=348

ENVIRONMENTS

To create a new variable (or change an existing one):

TOTAL=100

You type the name of the variable, an equals sign, and the
value. Don’t forget about quoting if needed!

ENVIRONMENTS

Once a variable is created, you can view it’s value with the $
metacharacter. The easiest way is to use echo:

echo $TOTAL

The $ metacharacter asks the shell to look up the value for
the named variable, and replace everything with that value.

So after parsing, the above command becomes:

echo 100

ENVIRONMENTS

Environment variables are local to the containing process,
but you can mark variables as “exported”, which allows them
to be passed down to subprocesses (child processes)

Once a variable is created, to mark it exported:

export TOTAL

Note the lack of the $ metacharacter!

To stop exporting: export -n TOTAL

ENVIRONMENTS

set: Displays all environment variables and values

env: Displays exported environment variables and values

To remove a variable completely:

unset TOTAL

A note about the $ metacharacter: if the variable does not
exist, the entire statement evaluates to the empty string

MAN PAGES

Man pages, short for Manual Pages, represent the online
help system in the Linux environment

Simple interface:

man <command>

man <library>

man <function>

man <file>

MAN COMMAND

The man command locates the requested manpage and
formats it for display

Manpages can be written to cover any topic, but generally
are available for commands, libraries, function calls, kernel
modules and configuration files.

For example, to learn more about the who command:

man who

MANPAGES

Follow fairly standard format: Name, synopsis, description,
examples, see also. Additional parts include author,
copyright, bugs and more.

Manpages are organized into “sections”, grouping user
commands into one section, system libraries in another, and
so forth.

The See Also section is invaluable!

INFOPAGES

There is some movement to convert the aging manpage
system into a newer format, the infopage system.

The info system provides a more advanced interface,
supporting links, split windows and more. Accessing
infopages is the same:

info <topic>

Once within the info system, type ? for help on the interface

The conversion is still in it’s infancy

EXERCISES

In your home directory, create a directory called ‘test’.

Read the man page on man.

List all files in your home directory that start with an ‘a’.

Display your PATH environment variable and explain it’s purpose.

INPUT AND OUTPUT

STDIN

STDOUT

STDERR

Command: who

0

1

2

This is the “normal” flow of data

REDIRECTION

Changing the standard flow of input and output

Output redirection sends one or more of the output streams
to files on disk

Input redirection feeds a file from disk as the input to a
process

OUTPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: who

0

1

2

who > who.out

who.out

Simple output redirection. Creates/overwrites file.

OUTPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: who

0

1

2

who 2> who.err

who.err

Simple stderr output redirection. Creates/overwrites file.

OUTPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: who

0

1

2

who > who.out 2> who.err

who.err

who.out

Combined out & err redirection. Creates/overwrites files.

File names must be different!

OUTPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: who

0

1

2

who > who.all 2>&1

who.all

Combined out & err redirection. Creates/overwrites files.

Only one file name, used for both output streams

OUTPUT REDIRECTION

All of the previous examples would create the output file if it
did not exist, and if it did, would completely overwrite the
existing file with the output of the command.

Adding an extra > would turn the redirection functions into
appending mode:

who >> who.out

who 2>> who.err

who >> who.all 2>&1

OUTPUT REDIRECTION
SUMMARY

> file

capture stdout to file

overwrites

> is equivalent to 1>

2> file
capture stderr to file
overwrites

> file 2> file2

capture stdout to file

capture stderr to file2

overwrites

OUTPUT REDIRECTION
SUMMARY

>> file

capture stdout to file

appends

>> is equivalent to 1>>

2>> file
capture stderr to file
appends

>> file 2>> file2

capture stdout to file

capture stderr to file2

appends

OUTPUT REDIRECTION
SUMMARY

> file 2>&1

capture stdout to file

capture stderr to file
overwrites

>> file 2>&1

capture stdout to file

capture stderr to file
appends

INPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: cat

0

1

2

Simple input redirection

cat < who.all

who.all

REDIRECTION

Input redirection isn’t common anymore, now that most
commands can handle their own file I/O

Input and output redirection can be combined:

cat < who.all > cat.who.all

cat < who.all 2> cat.who.all.err

cat < who.all > cat.who.all.all 2>&1

EXERCISES

From your home directory, use echo and output redirection to create a
file in the ‘test’ folder called ‘file1’ with the contents ‘helllo’. Use a
relative pathname.

Use input redirection and the spell command to spell check ‘file1’.

Spell check ‘file1’ again, saving the output to a file using redirection.

What is the absolute pathname for ‘file1’?

PIPES

Sweet, beautiful, powerful pipes! My favorite shell feature!

In concept, pipes are very, very simple

A pipe operates on two commands, connecting stdout of the
command on the left to stdin of the command on the right

who | wc -l

Let’s look at a picture of this...

PIPES

STDIN

STDOUT

STDERR

Command: who
1

The output of who is piped into the input of wc -l

This produces a count of the current user sessions

who | wc -l

20 STDIN

STDOUT

STDERR

Command: wc
1

20

This is the Pipe

PIPES

Pipes can be chained as long as needed, and can also be
combined with redirection:

who | fgrep bob | wc -l > bob.sessions

It’s even possible to intermix pipes and redirection! Just
keep your streams straight in your head:

who 2> who.errors | fgrep bob 2>&1 | wc -l

Try to diagram the previous command!

TEE

A very useful tool when working with pipes is tee

tee takes one argument, a filename, and will feed all input
from stdin to the file, while simultaneously feeding the
output to stdout

In effect, tee forks its input stream, sending one copy to a
file on disk, and another copy to stdout

Very useful tool!

EXERCISES

Spell check ‘file1’ and, using tee, output the results to the screen and a
file on disk.

Read the man page on wc. Use this information to count the number
of misspelled words in /etc/nsswitch.conf

Use echo and redirection to append a few more lines to ‘file1’ with
information about yourself.

slideshow.end();

FILESYSTEMS
Mmmm crunchy

PURPOSE

So all this data...

How to organize? Whose job?

Filesystems!

Drive

OVERVIEW

Boot Block Block
Group 0

Block
Group 1 ... Block

Group n

On the physical drive, information is stored in blocks

The first block is always the boot block

The rest of the blocks are pooled and organized into block
groups

Block Group

BLOCK GROUPS

Super
Block

Group
Descriptors

Block
Bitmap

Inode
Bitmap

Inode
Table

Each block groups contains a copy of the super block and
descriptions of all the block groups

The superblock holds information on the entire filesystem

Block and inode bitmaps provide fast lookup information on
free and allocated blocks and inodes

Data
Blocks

Block Group

BLOCK GROUPS

Super
Block

Group
Descriptors

Block
Bitmap

Inode
Bitmap

Inode
Table

The inode table holds all of the inodes (more on inodes in a
minute!)

The data blocks contain the actual data that is contained in
the files on the filesystem

Data
Blocks

WOW, WHAT?

Don’t worry - what’s important to understand is the inode
and it’s relationship with data blocks.

Superblocks, block groups, bitmaps and tables are important
to know about, but their details are beyond this course

INODES

Inodes, or Information Nodes, hold all of the meta
information for a file (or directory! those are just special
kinds of files!)

Details about ownership, size, permissions, times, ACLs and
more are stored in the inode.

But most importantly, the inode points to data blocks which
store the contents of the file.

WHAT ABOUT THE
FILE NAME?

Good question! You would think it would be stored in the
inode, but it’s not! That’s where directories come in...

A directory is a special type of file whose contents (in the
data blocks!) is a list of name/inode pairs.

There are many reasons to do it this way, including
performance, simplicity and hard link capability

LET’S DIAGRAM THIS
OUT

It’s easier to handle questions on the whiteboard ;)

ANY OTHER
QUESTIONS?

Bueller? Bueller?

FILE TYPES

So far, the presentation has covered regular files and
directories. There are other file types:

Soft (symbolic) links

Named pipes and sockets

Device files (block and character)

PERMISSIONS

Linux supports 3 main types of access on a file:

read: View the contents

write: Modify the contents and metadata

execute: “Run” the contents

Actually, it’s slightly more complex because it’s different for
files and directories...

PERMISSIONS

Files Directories

Read

Write

Execute

View the contents List contents

Change the contents/
metadata

Create/delete entries,
change metadata

“Run” the contents
Operate with

directory as CWD

AWESOME... SO?

Combining these permissions allows for the most common
access levels:

Read only

Read/Write

Execute

etc

Now to add a little more granularity, users and groups...

OWNERSHIP

All files are associated with one user and one group. This
creates the foundation for the main meat of the security
infrastructure in the Linux (and Unix) operating system.

When a process attempts an operation on a file, the user and
group of the process (because every process is associated
with one user and one group! surprise!) are compared with
the user and group of the file, which determines what level
of permissions is granted or denied on the file...

PUTTING IT ALL
TOGETHER...

Every file has 3 levels of permissions:

User

Group

Other

When a process seeks access, the process user is compared
to the file user - if they match, the process gets the User
permissions. Next Group. If no match, Other level access

THE TRIPLE OF
TRIPLES

All of the permission information is neatly summarized with
9 characters:

rwxrwxrwx

The presence of the letter indicates the permission is
granted, a hyphen in it’s place indicates the permission is
denied. Read only: r--r--r--

U
ser

G
roup

O
ther

SPECIAL PERMISSIONS

There are a few special permissions available:

Set User ID: Used on executables. When the file is “run”,
it runs as the user that owns the file.

Set Group ID: Same as SetUID, but for the group.

Sticky Bit: Interesting story about the name and history,
but nowadays, used on group/other writable directories to
protect contents of directory by limiting write ability to
only be allowed if accessing user matches user on file.

SPECIAL PERMISSIONS

ls uses a simple format to display the special permissions:

SetUID: rwsrwxrwx

SetGID: rwxrwsrwx

Sticky: rwxrwxrwt

Note that a lowercase letter is used if the underlying execute
bit is set, otherwise it will be an uppercase letter

SetUID without execute set for user: rwSrwxrwx

CHANGING
OWNERSHIP

Two commands are available for changing the ownership of
a file:

chown: Change Owner - changes the user owner of a file

chown bob memo.txt

chgrp: Change Group - changes group owner of file

chgrp mgmt memo.txt

CHOWN IT UP

chown can actually change the group owner as well, so you

don’t need to bother messing with chgrp

chown :mgmt memo.txt

You can do both at once, in fact!

chown bob:mgmt memo.txt

CHANGING
PERMISSIONS

Changing permissions is slightly more involved. The
command is chmod (change mode)

There are two basic ways to represent the permissions:

human friendly

octal

HUMAN FRIENDLY
CHMOD

When using human friendly permission specification, you
just need to specify what level permission you want to
change, how you want to change it, and what the
permissions are..

A table will clear up the mud...

HUMAN FRIENDLY
CHMOD

Who? How? What?

Symbols

Explanation

u, g, o +, -, = r, w, x, s, t

user, group,
other

add, subtract,
set

read, write,
execute, set id,

sticky

SO...

Examples:

chmod u+x file

chmod go-r file

chmod u=rw,go= file

Yes, you can combine “equations” to make different changes
by separating them with commas, as in the last example

OCTAL?

Octal refer to a base for a numbering system. Namely, base
8. Humans think and count in base 10, decimal. Computers
work in base 2 (binary) and sometimes base 16
(hexadecimal). Octal is just another one, useful for
permissions

Short of a long, grueling discussion of numbering systems,
you’re going to have to just do some memorization here...

OCTAL!

Octal Binary Permissions

0 000 ---

1 001 --x

2 010 -w-

3 011 -wx

4 100 r--

5 101 r-x

6 110 rw-

7 111 rwx

OCTAL

Each octal digit fully represents all three primary
permissions, so to specify all the basic permission levels for
a file, all you need are 3 octal digits (user, group, other)!

chmod 777 file

chmod 755 file

chmod 644 file

chmod 000 file

EXERCISES

Add write permissions for everyone to ‘file1’. Change the owner to
‘user’ and the group to ‘user’. (It won’t change, but if you did it right
you won’t get an error message)

Explain the following permissions: rw-r-----

What’s special about inode #2?

What is an inode?

LINKS

Linux filesystems support two types of links, hard and soft

Soft links are the easiest to understand, and have cousins in
most operating systems, which makes them familiar

After discussing soft links, we will tackle hard links

SOFT LINKS

A soft (or symbolic) link is like a shortcut in windows: it’s a
file that simply “points” to another file.

In Linux, the pathname “pointed to” (source) is stored in
the data blocks of the soft link (target)

A soft link is an actual file, consuming an inode and using
data blocks to store whatever pathname it’s pointing to

SOFT LINKS

To create a soft link, use the ln command with the -s option:

ln -s memo.txt link-to-memo.txt

In this example, memo.txt is the source and link-to-

memo.txt is the target

This command creates a new file, link-to-memo.txt,
of type link, which points to memo.txt

SOFT LINK TRIVIA

Since soft links merely store a pathname (absolute or
relative), they can link to anything, anywhere. Local
filesystem, other filesystems, network filesystems,
removable media filesystems. They can even point to invalid
pathnames! The kernel cares not!

Removing a soft link does not remove the file pointed to,
only the link file.

Soft links do not have permissions themselves (no need!)

HARD LINKS

With the foundation formed from the first dozen slides of
this lecture, understanding hard links should not be
difficult. Just a new concept to wrangle.

A hard link is simply one of the name/inode pairs in a
directory. Though when we think about link, we think of
another access point to the file.

Technically, all files are hard linked - via the directories.

By default, there is only one of these links...

HARD LINK TRIVIA

When a new hard link is created, it simply adds another
reference (filename) in a directory to that inode (file)

Removing a hard link does not remove the file unless it was
the only hard link to that inode

Hard links, due to their nature with inodes and directories,
only operate within a filesystem - you can not create a hard
link from one filesystem to another

How do permissions work?

EXERCISES

In your home directory, create a soft link to ‘file1’. Verify the link by
cat-ing the contents out. Compare the inode numbers.

In ‘test’, create a hard link to ‘file1’. Verify the link by cat-ing the
contents out and also compare inode numbers.

Why would you use a hard link instead of a soft link?

Which type of link can point across filesystems?

EDITING FILES

Time for a Nerd Holy War

Editor of choice, anyone? (TUI only - if anyone throws
down with a GUI editor, you’ve failed the class already!)

In my opinion, vi (or vim) wins =)

emacs is great, powerful and fast, but it’s just not common
enough. Plus, the control-x madness is, well, madness! ;)

VI DEMONSTRATION
Emacs users, bite your tongues!

slideshow.end();

PROCESSES
At least they’re not ISO-9001 processes

STRUCTURE

In Linux, a Process wraps up everything that is needed to
know about a running piece of software

The meta information not only includes the machine code
for the software, but also things like what user/group pair is
running the process, when it was started, what the command
line was, etc.

In fact, here’s a short list of the pertinent parts of a process:

STRUCTURE

PID

PPID

UID/GID

Command

Start Time

CPU Time

CWD

State

TTY

Environment

Priority

Nice Level

PID

Process ID

Linux uses this number to uniquely identify every process on
the computer

Number from 1-32768 (default - can change the maximum)

Assigns new PIDs incrementally by 1, 2 or 4

Loops back to 1 after hitting the maximum

PPID

Parent Process ID

PID of the process that started this one

What? Side track: The Fork & Exec model!

THE FORK AND EXEC
MODEL

More whiteboard goodness!

UID/GID

The User and Group running the process

Very important! Defines access and permissions to file
system and operating system.

Inherited from Parent process unless:

SetUID/SetGID bits on executable

Completes the Circle of Security

COMMAND

The command (and arguments) for the process

Identifies the executable running, as well as the arguments
passed at invocation

START & CPU TIME

Start Time tracks when the process was started

CPU Time tracks time the process actually spends running
on the CPU

CWD

Current Working Directory

‘nuf said

Inherited from parent process

STATE

State of the process:

Runnable

Stopped

Blocked - Interruptible

Blocked - Non-interruptible

Zombie

Definitions

TTY

Connected terminal

Mostly informational

Inherited from parent process

ENVIRONMENT

Every process has it’s own Environment

Inherited from parent process

PRIORITY

The priority is a read-only value showing the current priority
assigned by the scheduler

Ranges from 0-99, with higher values representing higher
priorities.

The scheduler constantly adjusts priorities to balance
efficiency, performance and responsiveness

NICE LEVEL

The nice level represents one influence on the calculations
the kernel uses when assigning priorities.

Originally designed and named to allow users to be “nice” to
other users of the system by assigning a higher nice value to
an intensive process, which in turn lowers it’s priority.

Ranges from -20 to 19. Default nice level is 0.

Only root can assign negative nice values.

See nice and renice commands

LISTING PROCESSES

ps: List of current processes

pstree: Generate hierarchical view of processes

Examples:

ps View all processes started by logged in user

ps aux View details of all processes on system

pstree View tree of all processes on system

PROCESS STATES

There are 5 basic process states:

Runnable

Stopped

Blocked/Sleeping - interrutible

Blocked/Sleeping - non-interrutible

Zombie/Defunct

RUNNABLE

This means the process is running, or is set to run

Remember: Linux is a multi-tasking operating system, so it’s
hard to see exactly when processes are running (switched so
quickly), so the state is runnable, indicating that the
scheduler will provide CPU time when it’s available

STOPPED

Opposite of Runnable - the process will not get CPU time

Nothing happens to the process - it’s still in memory, poised,
ready to go. But when it’s put in the stopped state, the
scheduler will not put it on the CPU

Files/network connections remain open, but network
connections may drop after a time (timeout)

INTERRUPTIBLE
SLEEP

The process is waiting for some event - perhaps an alarm
from a sleep system call, perhaps a signal or other external
event

Interruptible means that other processes/events can break
the sleep

NON-INTERRUPTIBLE
SLEEP

This sleep state is generally caused by IO operations -
accessing a drive, communicating with the network, etc.

Non-interruptible means that other processes/events can
not break this sleep.

This process is unable to respond to signals.

ZOMBIE/DEFUNCT

Braaaaaaiiiiiiinnnnnssss.. Wait, no, not that kind of zombie.

An exited process whose parent did not wait() on the child

Does not consume resources beyond a PID and meta
information storage (< 1k generally)

Generally caused by two situations:

Bug in software

Overly taxed machine

SIGNALS

First form of Interprocess Communication (IPC)

A signal is a message sent to a process to indicate events or
other conditions. The signal itself is the message - there
around three dozen defined signals...

COMMON SIGNALS

HUP - Hangup

INT - Interrupt

QUIT - Quit

ILL - Illegal Instruction

ABRT - Abort

KILL - Kill

SEGV - Segmentation Fault

ALRM - Alarm

TERM - Terminate

STOP - Stop

CONT - Continue

FPE - Floating Point
Exception

SENDING SIGNALS

kill: Send a signal to a process. Default signal: TERM

Examples:

kill 457

kill -9 2359

kill -CONT 1350

JOBS

Up until this point, every command run in the shell has been
run in the foreground. This means that the shell waits until
the command finishes before printing a prompt and
accepting a new command.

Sometimes, it can be useful to run a slow command, but
continue using the shell to run other commands at the same
time.

Running a command in this way is known as running a job
in the background

JOBS

To start a job in the background, you must postfix an & on
the command line:

command &

The & metacharacter tells the shell to run the command in
the background. The shell will start up the command, but
will not wait() on it. Instead, it will immediately loop.

Note: command output will go to screen unless redirection is
used

JOBS

jobs: Display all of the background jobs for this shell

The shell tracks jobs by a job id. Unique only to the
containing shell. % metacharacter can be used with kill,

fg and bg to refer to jobs by job id, instead of pid

fg: Bring the last backgrounded job into the foreground

bg: Put the last stopped job (ctrl-z) into the background

JOB CONTROL
EXAMPLES

EXERCISES
Open two shell windows. In one, start up an ‘iostat 1’ job in the background, and
be sure to redirect it’s output to a file.

In the second window, use ‘tail -f’ to watch the output file of the iostat job. Read
the manpage for tail. Use the ps command to find the pid of the iostat job, then
use the kill command to STOP the job.

Go back to first window, press enter a couple of times. See the stopped message?
Use jobs to view the job, then continue the job with a kill signal or the bg
command.

From either window, kill the job.

slideshow.end();

THE BOOT PROCESS
From cold silicon to useful OS

OVERVIEW

The boot process gets a machine from the useless off state to
the feature rich operating system we all know and love

Requires cooperation between hardware and software to
correctly hand off processing

Akin to the life cycle of a human - birth, newborn, infant,
toddler, teen, adult

BIRTH

Power switch flipped on

Electricity flows from wall, through power supply where it
gets converted to the levels necessary for the computer, and
on to the motherboard, drives, CPU and more

Completely unaware of the world or even what’s attached to
the motherboard.

INFANT

BIOS - Basic Input/Output System - CPU looks for
instructions starting at a specific address, which happens to
be where BIOS resides. BIOS initializes and starts the....

POST - Power On Self Test - A simple set of tests that BIOS
performs to verify basic functioning of attached hardware.

Like an infant, extremely limited understanding of world

Searches for valid MBR, loads the software found there and
transfers control to the...

TODDLER

Boot Loader - Special software installed to the MBR of the
boot partition which selects and loads the kernel.

Can be configured to immediately load the default OS, or
can offer choice to user

Slightly better understanding of world - can read linux
filesystems, sometimes includes powerful debugging and
configuration support.

Main job: select and load kernel, transfer control to kernel

TEENAGER

Dreaded teenager age: knows a lot about the world, but
doesn’t contribute a thing. Still pretty useless.

Kernel loads and initializes. Device drivers are loaded and
initialized. Basic hardware checks performed.

The First Process is created from nothing: init

ADULT

init loads the inittab, specifying what software needs to be
started. init starts running all of the specified startup scripts

Services are started by init, including network
configurations, X Windows, network services, databases, etc.

At this point, the machine is finally becoming useful:
otherwise, an adult

Eventually, login processes are started and the boot process
is complete!

MORE ON INIT

init’s configuration file is /etc/inittab

This file details actions taken for certain global events, like
ctrl-alt-delete and UPS powerfail and powerrestore alerts.

This file tells init what needs to be done for a given runlevel
as well as what the default runlevel is.

A runlevel defines what services are running...

RUNLEVELS

Runlevels:

S: System startup

0: OS stopped, machine halted (usually powers off as well)

1: Single user mode - for maintenance

2: Multiuser, no NFS shares

3: Full multiuser, TUI

4: Unused

5: Full multiuser, GUI

6: Reboot

RUNLEVELS

telinit: Signal the init process to change the current
runlevel

Switching runlevels is fairly uncommon - generally only
used if system maintenance needs to be performed

Runlevels can be used to control what services a machine
provides, and can sometimes be useful to quickly
reconfigure a machine for a new task

INIT SCRIPTS

What is actually running in a given runlevel is defined by the
init scripts for that level.

That standard location for the init scripts is:

/etc/rcX.d

Where the X corresponds to the runlevel

For example, /etc/rc5.d contains all of the init scripts
that, combined, provide runlevel 5 service

RC DIRECTORIES

The files in the rc directories start with either an S or a K:

S means to start the service, ie run the command with
“start” as an argument

K means to kill the service, ie run the command with
“stop” as an argument

After the S or K, there is a two digit number which is used
for ordering the execution of the scripts

ENTERING A
RUNLEVEL

So when the init process enters a runlevel, the steps are:

Run all of the Kill scripts, in order, with “stop” as an
argument

Run all of the Start scripts, in order, with “start” as an
argument

INIT SCRIPTS

If you look closely, you will see that /etc/rcX.d actually
holds a collection of symbolic links

The actual script files are stored in /etc/init.d

The main reason for this is so that there is only one copy of
each init script, reducing the chance that a script change
won’t be reflected in all runlevels.

DAEMONS

A daemon (or demon) is just a persistent process that
performs some action or service. Daemons are what make
machines useful. Examples:

httpd: Web services

mingetty: Watches terminals and starts login processes

mysqld: Database services

syslogd: Logging services

EXERCISES

View the contents of /etc/init.d. Check out a couple of the startup
scripts. Use the httpd script to start up apache. Check that it worked
by going to ‘localhost’ in Firefox. (You’ll get a 403 forbidden error, but
that’s expected)

Change the runlevel to 3. What happened? Change it back to 5.

Where can you set the default runlevel?

slideshow.end();

USERS & GROUPS,
BACKUPS

Basic System Administration

USERS AND GROUPS

Users and Groups define access to the operating system through
the file permission scheme.

Root is the super user, and the only user with special permissions

Every user is a member of at least one group, which is called their
primary group. The main purpose of this primary relationship is
to define group owner of created files.

Users can have a secondary group membership in as many
groups as needed. These secondary relationships exist to
broaden a user’s access to the files on the system.

SIDE NOTE: SU AND
SUDO

Best practice states that a user should always log in as a
regular user, then switch to the root user when necessary for
a system administration task. There are two tools available
to do this:

su: switch user. As a regular user, this allows you to
switch to the root account if you know the root password.

sudo: “su do”. Perform an action as root or another user.
If configured for access, you only need your password.
Use visudo to edit configuration.

CONFIG FILES

User information is stored in two files:

/etc/passwd

/etc/shadow

Group information is stored in one file:

/etc/group

/ETC/PASSWD

List of user records, one per line, with columns separated by
colons. Format:

login:x:userid:groupid:gecos:homedir:shell

Examples:

root:x:0:0:root:/root:/bin/bash

mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash

/ETC/SHADOW

Similar colon-separated-column list of records:

login:password:password aging fields

Aging fields track dates for password resets, locks, etc

Examples:

root:pB8msP1fCbCqc:13904:0:99999:7:::

nisburgh:vRoPw6a/jQsp.:14466:0:99999:7:::

/ETC/GROUP

Same colon-separated-column list of records format

groupname:grouppassword:groupid:secondarymembers

Group passwords allow temporary access to a group, are
rarely used and not set up by default

Examples:

daemon:x:2:root,bin,daemon

apache:x:48:jack,nisburgh

MANAGEMENT

While it is possible to edit the three files directly, it’s easier
and safer to use the management commands to create,
modify and delete users and groups:

useradd, usermod, userdel

groupadd, groupmod, groupdel

USERADD

useradd: Add a new user to the system

Accepts various arguments to control the settings on the
user account. Most common is the -g option to specify the
primary group of the user, and the -G option to list
secondary group memberships. Examples:

useradd lisa

useradd -g clowns -G trouble,simpson bart

USERMOD, USERDEL

usermod: Modify a user’s settings. Example:

usermod -G detention bart

userdel: Remove a user from the system. Main option to

consider is -r, which tells userdel to remove the user’s
home and spool directories. Example:

userdel moe

GROUP COMMANDS

groupadd: Adds a new group to the system. Example:

groupadd bullies

groupmod: Mainly used to rename a group. Example:

groupmod -n mktg mkg

groupdel: Remove a group. Example:

groupdel microsoft

PASSWORDS

passwd: Change login password.

Root can change the password for any user on the system

Root can also setup password aging, allowing for timed
password resets and account disabling

passwd is also the preferred way to lock a user account:

passwd -l mary

PASSWORD AGING

To set the maximum lifetime for a user’s password:

passwd -x days login

When a user’s password has expired, you can set the number
of days it can remain expired before disabling the account
completely:

passwd -i days login

IMPORTANT USER
ENVIRONMENT FILES
/etc/skel default template for a newly-added user’s

 home directory

/etc/profile sets environmental variables used by all users

/etc/profile.d contains scripts specific to certain rpms

/etc/bashrc contains global aliases and system settings

~/.bashrc contains user aliases and functions

~/.bash_profile contains user environment settings and can

 be set to automatically start programs at login

EXERCISES
Create a new group ‘dev’. Create a new user ‘alice’ as a member of the
‘dev’ group, with a description of “Alice from Dev” and a default shell of
‘/bin/csh’. Use the passwd command to set a password for alice, then
log in as alice and verify her access.

Lock alice’s account and verify she can’t log in anymore. Unlock her
account and verify access once more. Add alice as a secondary member
of the ‘gdm’ group.

Set a maximum password lifetime of 4 weeks for the alice account.
Look at the passwd, shadow and group files.

BACKUPS

Why backup?

Hardware failures

Software failures

[Epic] User failures

Disasters

WHAT TO BACKUP?

At minimum, all user data and intellectual property

At maximum, entire systems, OS and all

In reality, many factors drive what gets backed up:

budget

time

resources

need

WHERE TO BACKUP?

Good question - many, many places

Local online copies

Remote online copies

Offline copies - Disk, Tape

HOW TO BACKUP?

Small scenario:

rsync, tar, burning software, tape drive

Large scenario:

rsync, tar, enterprise backup software, tape libraries

FLATTENING
HIERARCHIES

How to backup a directory? The directory represents an
entire tree of files and directories? How can you put all of
the information necessary to recreate the tree into one file?

tar!

Originally the Tape Archive tool. Used to backup directory
trees to tape. Nowadays more commonly used to “flatten” a
tree into one file.

CREATING A TAR
ARCHIVE

To create a tar archive:

tar cf <tarfile.tar> <file> [file]...

The c option tells tar to create an archive. The f option is
critical - it tells tar to put the archive in a file on disk, rather
than on a tape device.

You can add the v option (tar cvf) to get verbose output.
Tar will report every file added to the archive.

VIEWING AN ARCHIVE

To view an archive (a table of contents):

tar tf tarfile.tar

The t option asks tar to print a table of contents of the

archive. If you add the verbose flag (tvf), tar will report
detailed information on each file, similar to the long output
of the ls command.

EXTRACTING AN
ARCHIVE

This is the tricky part of tar, and getting it right requires an

understanding of how tar stores file in the archive.

When an archive is created, the pathnames are stored into
the archive. When you view the table of contents, you’re
viewing the relative pathnames as they would be created on
extraction.

This can sometimes confuse the user, and is best illustrated
with an example...

EXTRACTING AN
ARCHIVE

If tar tvf file.tar reports:

memo.txt

report/

report/data

Then when the archive is extracted, the resulting files will be:

CWD/memo.txt

CWD/report/

CWD/report/data

Where CWD represents the current working directory

EXTRACTING AN
ARCHIVE

To extract an archive:

tar xf tarfile.tar

tarfile.tar will be extracted to the current working
directory, so be careful! Make sure you understand the
contents of the tar file to be sure you don’t accidentally
overwrite existing files.

TAR EXAMPLES
Help remove the mud

EXERCISES
From your home directory, create a tar backup of the test folder.
Name the tar file ‘test.tar’. Verify it is correct by viewing the table of
contents.

Create a new directory in your home folder called ‘temp’. Change into
this directory and extract your test.tar backup file. Can you see the
‘test’ folder and it’s contents?

Browse through the man page for ‘diff’. Use ‘diff -r’ to compare the
original ‘test’ folder with the newly extracted ‘test’ folder. Are there
any differences?

COMPRESSION

Tar files can get quite large, and storing/sharing them
uncompressed wastes a large amount of storage space and
bandwidth.

Enter: compression.

Compression uses complex algorithms to rewrite the
contents of a file in a way that takes up less space, but can be
reversed back to the original contents

COMPRESS

One of the original compression algorithms: the Adaptive
Lempel-Ziv. Not used very much any more, especially in
Linux environment

Achieves 40-50% compression on average

Extension: .Z

Compress: compress

Decompress: decompress

GZIP

Updated algorithm: Limpel-Ziv 77 (LZ77)

Achieves 60-70% compression on average

Extension: .gz

Compress: gzip

Decompress: gunzip

BZIP2

Powerful algorithm: Burrows-Wheeler Block Sorting
Huffman Coding

Achieves 50-75% compression on average

Extension: .bz2

Compress: bzip2

Decompress: bunzip2

TAR + COMPRESSION

Once a tarball has been created, it’s generally compressed
with gzip or bzip2:

gzip -9 tarfile.tar

bzip2 -9 tarfile.tar

The -9 option tells the compression tool to maximize
compression efficiency (taking longer). 1-9 are acceptable
values, with -1 indicating minimal efficiency and maximum
speed.

ZIP FILES

Zip files, originally put forward in the DOS/Windows world
via the pkzip tools, and now winzip, are actually a
combination of hierarchy archiving and compression.

Basically, zip files include the features of tar and
compression in one format! Advantages and disadvantages,
of course.

There are open source tools which allow access to creating,
viewing and extracting zip files in the Linux environment.

ZIP

Lots of algorithms implemented

Varying compression ratio depending on algorithms used

Extension: .zip

Compress: zip

Decompress: unzip

ZIP

Remember, zip files are not just compressed files. The zip
archive actually contains files and directories within it, so
the interface is closer to tar than gzip or bzip2.

Generally, zip files are only encountered in the Linux world
when interacting with the Windows world. Within Linux,
everything is a compressed tarball.

EXERCISES

Make several copies of test.tar and use gzip to compress them. Try
once with compression level 9 and once with compression level 2.
Check the sizes of each.

Use bzip2 to compress one of the copies. Compare it’s size with the
gzip sizes.

slideshow.end();

PERFORMANCE
TUNING

Getting that extra bogomips

ACTUALLY...

The focus for this section will be more on the process of
performance tuning...

Collecting meaningful benchmarks

Establishing a baseline

Understanding how to compare benchmarks

BENCHMARKS

A benchmark is a specific measure of performance, taken in
a repeatable fashion such that outside influences are
minimized and operational characteristics of the machine
and operating system are matched for every measurement.

In other words, every time a benchmark is taken, it’s
taken in the same manner and under the same conditions

This allows for meaningful comparison of benchmarks

BENCHMARK BEST
PRACTICES

Unless the benchmark mandates otherwise, it’s generally best to
collect in single user mode. This will help to isolate the system from
outside users and influence, such as network requests and nosy users.

Furthermore, if possible, shut down all services that won’t be needed
(single user mode will go a long way towards accomplishing this)

Run the benchmark at least 5 times in a row, and average the results.
For better accuracy, run the test 10-20 times in a row and throw out
the top and bottom 10% metrics. Then average the resultant set.

Document everything! Conditions, commands, sequences, timing,
every individual result and how the final benchmark was calculated.

BENCHMARKING
TOOLS

HDPARM

Great way to test hard drive performance

Using the -t option of hdparm, disk subsystem read times
can be accurately measured without any filesystem overhead
or cache inconsistencies.

The -T option measures cache read performance.

COMPILING

One of the most common ‘real world’ benchmarks is to
compile some software and time how long it takes. This
covers cpu, io, memory and operating system.

The kernel is a great example

Obtain source code for kernel (must always use same
version of kernel for meaningful results)

Configure with default configuration

time the compile step (make)

LMBENCH

lmbench is a well-known tool with a large selection of
benchmark tests available

See http://lmbench.sourceforge.net

IOZONE

A very nice filesystem benchmarking suite.

Covers many different file and IO system operations.

Produces excellent reports which can be imported into a
spreadsheet applications to create outstanding graphical
representations.

See http://www.iozone.org

SOME TUNABLE
FEATURES

Play with caution

SHUTDOWN UNUSED
SERVICES

Why run apache if you aren’t serving a website?

Review running services and shut down unnecessary ones

HDPARM

Lots of parameters available for tuning.

In-depth knowledge of disk IO subsystems required.

Very complex command - see man page.

SYSCTL

Kernel parameters

sysctl -a: produce a complete list of all tunable kernel
parameters

Examples include networking, kernel, filesystem

RECOMPILE THE
KERNEL

Custom build the kernel - add/remove the features needed
for each particular system.

Target exact processor family to take advantage of special
instructions and abilities

OTHER TRICKS

If access times aren’t needed, disable them on the filesystem

Modify /etc/fstab and add “noatime” to options for
each filesystem

This reduces inode writes every time a directory is visited
or a file is viewed

On multiple CPU/core machines, use taskset to bind
processes to one processor to help reduce unnecessary cache
dumping

OTHER TRICKS

Tune physical and virtual memory

Spread out swap space across several drives, set priorities
to maximize parallelism while avoiding slower drives

Implement a RAID solution

Disable SELinux

Tune nice levels

slideshow.end();

THE KERNEL
<insert funny joke>

OVERVIEW

The kernel represents the core of the operating system.
Major components include:

Scheduler

Memory manager

Device drivers

Filesystems

Networking

MODULAR

The Linux kernel is modular, allowing functional blocks of
software to be added and removed on the fly via the modules
mechanism.

Modules encompass functions such as:

Device drivers

Kernel features - firewalls, RAID, LVM

Filesystems

LSMOD

lsmod: Prints all of the currently loaded modules

[root@dev1 ~]# lsmod
Module Size Used by
ipv6 264608 20
binfmt_misc 14096 1
dm_multipath 21136 0
parport_pc 31724 0
lp 16576 0
parport 42252 2 parport_pc,lp
usbcore 129724 1
ext3 125968 1
jbd 61928 1 ext3
raid10 23808 0
raid456 119840 0
xor 10512 1 raid456
raid1 24064 0
raid0 10752 0
multipath 11776 0
linear 9088 0
dm_mirror 23016 0
dm_snapshot 18872 0
dm_mod 55752 3 dm_multipath,dm_mirror,dm_snapshot
processor 26412 0
fuse 42160 1
[root@dev1 ~]#

RMMOD

rmmod: Removes (unloads) a loaded modules

Can not unload a module that is a dependency of another
module

Can not unload in-use modules

INSMOD

insmod: Loads a module into the kernel.

Full pathname required

Does not handle dependencies automatically

MODPROBE

modprobe: Intelligent module handler

Can load/unload modules

Automatically handles dependencies

Only need to specify name of module, not full path, when
loading

depmod: Rebuilds module dependency lists

KERNEL BOOT
PARAMETERS

Hundreds of parameters can be passed to the kernel at boot
time. Some of the most common include:

root=/dev/sda3 Set the root device

quiet Reduce informational messages at startup

rhgb Red Hat Graphical Boot

console=ttyS0 Specify console device

See http://www.kernel.org/doc/Documentation/kernel-parameters.txt

KERNEL RUNTIME
PARAMETERS

Recall from performance tuning lecture that there are
numerous kernel parameters which can be adjusted at
runtime, including:

net.ipv4.*

vm.*

kernel.*

fs.*

SYSCTL

sysctl: Get/set kernel parameters

sysctl -w kernel.pid_max=65535

sysctl -a

sysctl -w vm.swappiness=100

LOCALIZATION AND
INTERNATIONALIZATION

Linux has full support for timezone and locale configuration.

Language and locale-specific details are controlled through
the LANG and LC_* environment variables. See the locale
command for details.

The system clock tracks time by the epoch, but when
displaying will be adjusted by timezone. Timezones can be
set with the TZ environment variable, the value determined
by tzselect. The system timezone information is

provided by /etc/localtime.

EXERCISES

View the loaded modules. Remove the parport module. Might be
several steps involved...

Use locate to find ‘parport.ko’ and re-load the module using insmod.

Remove the parport module again. Add the module using modprobe.
Isn’t that easier? =)

slideshow.end();

FILESYSTEM
ADMINISTRATION

mount? umount? mkfs? fsck?

KERNEL VFS LAYER

VFS: Virtual File System

One layer of the kernel is
the VFS Abstraction layer.
This layer defines a basic
interface that all filesystem
drivers at minimum must
implement. http://www.ibm.com/developerworks/linux/library/l-linux-kernel/

VFS

From the user’s perspective, the filesystem is simply a
hierarchy of directories and files.

But in reality, some branches might reside on a networked
file server, some might be on an optical disc, some on
internal drives..

VFS allows the kernel to stitch all of these disparate storage
systems into one cohesive interface!

/ AGAIN

/ is the root of the filesystem, forming the foundation upon
which all access is provided.

When additional filesystems need to be accessible, all that
needs to be decided is the pathname to a directory where
users can see the filesystem.

This is known as the mount point.

The mount point is how the kernel tracks thresholds
between filesystems.

LET’S SEE THIS ON
THE WHITEBOARD

MOUNT

mount: Attach a filesystem to a given mount point

Creates the “detour” sign

Linux supports dozens of different filesystem types,
available by the simple -t option to the mount command:

mount -t smbfs //windoze/share /windoze-share

UMOUNT

umount: detach mounted filesystem

Simply removes the “detour” sign

Mount point becomes a simple directory again

Generally only need to pass mount point as argument:

umount /windoze-share

MOUNT/UMOUNT
EXAMPLES

PARTITIONING

What is partitioning?

Splitting up a hard drive into organizable chunks

Why?

Isolates filesystem corruption

Simplifies/speeds backups

Allows optimizing filesystems to tasks

FDISK

fdisk: partitioning tool

Works on one disk at a time, allows for viewing and
manipulating partition table.

Fairly complex tool, so live example will be best

MKFS

mkfs: format a device to create a new filesystem

“Paints the parking stripes” for the filesystem structure

Creates superblock, block groups, superblock copies,
bitmaps and inode tables and creates basic structure on
disk

Through -t option, mkfs can create different types of
filesystems

Live Example...

FILESYSTEMS

There are several filesystems available for use on a Linux
system, including:

The Linux Extended Filesystem (ext2, ext3, ext4)

ReiserFS (reiser3, reiser4)

XFS

LINUX EXTENDED
FILESYSTEM

Original filesystem for Linux. ext2 was the filesystem for
years.

ext3 hit and brought with it journaling

ext4 introduces various new performance improvements,
particularly for large files.

REISERFS

ReiserFS was the first Linux filesystem to support journaling

Reiser3 is the current version, while Reiser4 is being
developed and possibly integrated with the kernel at some
point in the future.

Reiser4 includes advanced performance features for small
files, plugin support, efficient journaling and more.

XFS

XFS was designed by SGI (remember them? *sigh*)

XFS is particularly well suited to large file handling and
performance

Can support volumes up to 8 EXABYTES!

FILESYSTEM
INTEGRITY CHECKS
fsck: Filesystem Check

Generally only run when a filesystem needs it:

Mount count

Last check

Dirty

Checks all of the filesystem structures for accuracy and
completeness

EXERCISES

Un-mount the /lab filesystem.

Rebuild the /lab filesystem (better figure out the right device name!)
using ext3, a blocksize of 1k, and a reserve space of 2%. Confirm
settings with tune2fs. Mount the /lab filesystem when complete.

Un-mount the /lab filesystem and force an integrity check. Re-mount
the /lab filesystem. Use e2label to set the filesystem label on /lab to ‘/
lab’.

LVM

The Logical Volume Manager

Abstracts the physical hardware into logical drive spaces
which can be dynamically grown/shrunk and span
disparate physical devices

Simplifies hard drive management as it abstracts away the
details of the underlying storage devices.

Adds a small amount of overhead to the VFS layer,
slightly reducing performance.

LVM BASIC IDEA

To create a space suitable for mkfs, three steps must occur:

pvcreate: Create a physical volume

vgcreate: Create a volume group on PV

lvcreate: Create a logical volume on VG

See also pvdisplay, vgdisplay, lvdisplay

QUOTAS

Quotas are used to limit how many filesystem resources are
available to a user.

Inodes and space are controllable.

Hard and soft limits are available, with grace periods.

Enabling quotes is an involved process...

ENABLING QUOTAS

usrquota and grpquota options must be enabled on the filesystem
mount

Two files must be created at the root of the filesystem: aquota.user and
aquota.group

Run quotacheck -mavug

Turn on quotas by running quotaon with the mount point as argument.

Now you can use edquota to set up the quotas

See man pages: quota, repquota, edquota, quotaon,

quotacheck

slideshow.end();

SHELL SCRIPTING,
CROND, ATD

SHELL SCRIPTING

Shell scripting involves placing a series of shell commands in a
file for later re-use.

Simple shell scripts simply run command after command,
as if the user typed them in at the command line

More complex shell scripts actually make decisions about
what commands need to be run, and might even repeat
certain sequences to accomplish some task

Scripts start executing at the top and stop when there are no
more commands to execute or when exit is called.

EXAMPLE SHELL
SCRIPT

Here is an example of a very simple shell script:

echo “Hello, what is your name?”
read NAME
echo “Hello $NAME, it’s nice to meet you!”
echo -n “The current time is: “
date

Using the echo command, this script asks a question.

The read command accepts input from the user and stores
it in the environment variable NAME

The script finishes up with a couple more echo statements,
greeting the user and announcing today’s date

SHELL SCRIPTING

If we put the example in a file called myscript, we can
execute the script as:

bash myscript

bash will open myscript and execute each line as if the
user had typed it in manually.

[root@localhost ~]# bash myscript
Hello, what is your name?
Linus
Hello Linus, it’s nice to meet you!
The current time is: Sun Nov 29 09:39:33 CST 2009
[root@localhost ~]#

INTERPRETERS

In the previous example, we put five commands in a regular
file and fed the filename to bash on the command line,
which in turn executed the commands.

Running in this way, bash operated as an interpreter.

Reading each line of the file, bash would interpret the
words and perform some action.

There are many interpreted languages available for
scripting, including all shells, python, ruby, perl, etc.

EXECUTING SCRIPTS

To run a script, feed the file to the appropriate interpreter:

bash mybashscript

perl myperlscript

This works fine, but sometimes it’s more user-friendly to allow the
script to be run directly, removing the need for an external call to
the interpreter...

./mybashscript

myperlscript

SHEBANG

This is accomplished with the shebang (#!). Also known as
a hash bang, pound bang or hashpling.

When the kernel is asked to execute a file, it must either be
machine code, or a file that starts with the shebang
sequence. If the first two characters of the file are a hash
mark and an exclamation mark, the rest of the line is
expected to be an absolute pathname for an interpreter,
which will then be invoked to “run” the file as a script.

SHEBANG

So, add an appropriate shebang to the example:

#!/bin/bash
echo “Hello, what is your name?”
read NAME
echo “Hello $NAME, it’s nice to meet you!”
echo -n “The current time is: “
date

[root@localhost ~]# chmod 755 myscript
[root@localhost ~]# ./myscript
Hello, what is your name?
Linus
Hello Linus, it’s nice to meet you!
The current time is: Sun Nov 29 09:39:33 CST 2009
[root@localhost ~]#

Then add execute permissions and the script can be run
directly:

DECISIONS

More advanced problems require the script to make
decisions. There are two basic ways to make decisions with
shell scripts:

if statements

case statements

TEST COMMAND

Before we continue talking about decisions, we need to talk
about the test command. This command actually performs
the comparisons necessary to ask a question, such as:

“string1” = “string2” Returns true if string1 is
identical to string2

VAR -le 45 Returns true if VAR is numerically less
than or equal to 45

See the man page for test for additional details

IF STATEMENTS

Basic syntax:

if list;

then list;

[elif list; then list;]

...

[else list;]

fi

IF EXAMPLE

This script will now base it’s response based on what name
the user provides

#!/bin/bash
echo “Hello, what is your name?”
read NAME
if [“$NAME” = “Linus”]
then
 echo “Greetings, Creator!”
elif [“$NAME” = “Bill”]
then
 echo “Take your M$ elsewhere!”
 exit
else
 echo “Hello $NAME, it’s nice to meet you!”
fi
echo -n “The current time is: “
date

CASE STATEMENTS

Basic syntax:

case word in

pattern [| pattern]) list;;

...

esac

CASE EXAMPLE

This script also bases it’s response based on what name the
user provides, but does so using a case statement instead of
a large if statement

#!/bin/bash
echo “Hello, what is your name?”
read NAME
case $NAME in
 “Linus”)
 echo “Greetings, Creator!”
 ;;
 “Bill”)
 echo “Take your M$ elsewhere!”
 exit
 ;;
 *)
 echo “Hello $NAME, it’s nice to meet you!”
esac
echo -n “The current time is: “
date

LOOPING

Sometimes a certain sequence of commands need to be run
repeatedly, either for a set number of times or while some
condition is true. This is accomplished with:

while loops

for loops

WHILE LOOPS

Basic syntax:

while list;

do list;

done

WHILE EXAMPLE

This script will loop until the name typed is “Linus”

#!/bin/bash
echo “Hello, what is your name?”
read NAME
while [“$NAME” != “Linus”]
do
 echo “I don’t know that person, what is your name?”
 read NAME
done
echo “Greetings, Creator!”
echo -n “The current time is: “
date

FOR LOOPS

Basic syntax:

for ((expr1 ; expr2 ; expr3))

do list;

done

FOR EXAMPLE

This excitable script repeats your name 3 times before giving
you the date and time

#!/bin/bash
echo “Hello, what is your name?”
read NAME
for ((I=0 ; I<3 ; I++))
do
 echo “Hello $NAME!!”
done
echo -n “The current time is: “
date

SCRIPTING

There is of course quite a bit more to shell scripting than can
be covered in this course. There are a few more structures
you can use for looping, and dozens of special
metacharacters for achieving all kinds of results.

With this introduction, though, you should be able to read
through light shell scripts and have a handle on what’s going
on, as well as be able to write simple ones on your own.

EXERCISES

Write a simple shell script that prints out the message “Hello world.”
Make the script executable and verify it works correctly by running it
as “./myscript”

Browse through the man page on ‘bash’, focusing in a bit on the
various scripting elements.

CROND
Scheduled fun

OVERVIEW

crond is the cron daemon. Cron provides for the ability to
execute commands on a regular basis.

Generally used to run hourly, daily and weekly type system
maintenance scripts.

Also useful to run reports, cleanup jobs and much, much
more.

USING CRON

Cron is controlled through crontab files.

There are system-wide crons, accessible under /etc/cron.*

Every user has their own crontab, accessible through the
crontab command

SYSTEM CRONS

/etc/crontab defines the system cron jobs.

Many distributions use the run-parts script to execute all
scripts found in /etc/cron.hourly, /etc/cron.daily, etc on
the appropriate schedule.

/etc/crontab defines the times for each schedule: hourly,
daily, weekly, monthly

CRONTAB

crontab: View, edit or remove crontabs

The -l option prints the crontab. The -e option opens
the crontab for editing. The -r option removes the
crontab.

Root can work with the crontab for any user by specifying
the username on the command line:

crontab -e -u bob

CRONTAB SYNTAX

There are two main components to a crontab entry:

The timespec specifies when the command should be run

The command is what gets executed every time the
timespec is matched

CRONTAB TIMESPECS

The timespec is broken down into 5 fields, separated by
spaces:

minute hour day-of-month month day-of-week

Each field can contain a number, a range of numbers, a
comma-separated list of numbers, an asterisk or a number
slash division rate

Mostly self-explanatory - some examples will help...

TIMESPEC EXAMPLES

0 23 * * * 11pm every day

30 * * * 1-5 30 minutes after every hour, M-F

0 7 1 * * 7am, first of every month

* * * * * Every single minute

0,10,20,30,40,50 * * * * Every 10 minutes

*/5 8-17 * * 1-5 Every 5 minutes, 8am-5pm, M-F

EXAMPLE CRONTAB

There are various additional options and features available
to the cron system. Check the man pages for reference:

cron, crontab (sections 1 and 5)

01 4 * * * /usr/local/bin/restart-webserver
00 8 1 * * /usr/bin/mail-report boss@mycompany.com
*/5 * * * * /monitor/bin/check-site -e admin@mycompany.com -o /var/log/check.log

ATD

ATD OVERVIEW

atd is a simple daemon that executes one-off jobs at a
certain time.

To create an at job:

at <time>

Then you enter all of the commands you want run at the
given time, and finish by typing ctrl-d

ATD

atd is not commonly used these days, but if it’s there is can
be useful in some situations..

If editing the firewall on a machine over the network, it’s
sometimes nice to put a simple “reset” so if you lock
yourself out, you’ll be able to get back in the machine:

[root@localhost ~]# at now + 10 minutes
at> iptables-save > /iptables.backup
at> iptables -F
at> <EOT>
job 1 at 2009-11-30 10:44 a root
[root@localhost ~]#

ATD

Some additional commands to use with the at system:

atq: Displays list of at jobs

atrm: Removes given at job from queue

slideshow.end();

SOFTWARE
INSTALLATION

Gotta have it

DELIVERY!

Software is delivered in one of two manners:

Source form - requires compiling

Binary form - generally wrapped up in a package

WHICH IS BEST?

Both formats have their advantages and disadvantages..

Compiling from source can provide higher performing
machine code, plus it gives the option of selecting features
and configurations only available at compile time.

Pre-compiled software is easier - it alleviates the
[possible] headaches of compiling, and if distributed in a
package format, provides built-in management
functionality.

COMPILING

Compiling from source can be tricky.

First of all, the development tools and packages must be
installed, most importantly: gcc and make.

gcc: The GNU C Compiler. The de facto compiler for open
source software.

make: GNU Make. A development tool which uses a rules-
based configuration syntax to determine and run all of the
necessary commands needed to build a software project.

COMPILING BASICS

The basic steps for compiling a software package:

Download the source tarball

cd into the extracted directory

Read the INSTALL and/or README file, follow directions!

./configure

make

make install

COMPILING GONE
WRONG

The previous steps are for well-maintained open source projects that
follow the GNU coding standards, and make use of a very cool tool

called autoconf.

Sometimes it’s not that simple. The README and INSTALL files can

help explain the build process.

If an error comes up during compilation, try reading the error message,
and if it makes sense, fix whatever the problem is (permission issue,
for example). If the message seems to be in a foreign language, try
googling the name of the software plus the error message.

Past that, learning to code is your next best bet. :)

PACKAGES

Installing a software package is pretty straight forward.

There are a few different package formats out there. The
two most popular are:

rpm: Redhat Package Manager

deb: Debian package

RPM

RPM’s provide full software packaging features: pre-install
scripts, post-install scripts, dependencies, meta information,
and an installed software database to name a few.

The RPM system maintains a database of all installed
software on a machine - this is useful for tracking and
updating reasons, as well as dependency verification and
software management.

RPM

rpm: The Redhat Package Manager tool. Provides interface
to RPM system, performing queries, installs, upgrades,
uninstalls and general database maintenance operations.

-i option: install the given package

-q option: query the database

-e option: erase the given package from the system

RPM EXAMPLES

YUM

Not yum as in “This is yummy!”

yum: Yellowdog Updater Modified

Supports package installation over the network through
repositories. Config: /etc/yum.conf

RPM backend

Simple interface

YUM EXAMPLES

DPKG

dpkg is akin to rpm. It is the backend package workhorse
for Debian based distributions.

dpkg provides similar features and functionality as rpm.
For example:

-i: install a package

-l: list installed packages

-r: remove and installed package

APT TOOLS

The APT tools are akin to YUM. They provide support for installing
packages remotely and handling dependencies.

apt-get: Install/upgrade a package

Supports package installation over the network through sources.

Config: /etc/apt/sources.list

Originally for dpkg backend, but now also RPM backend

Simple interface

aptitude: TUI frontend for managing packages

EXERCISES

Browse through the manpage for ‘rpm’. Study the “Query” section.

Use your new knowledge to produce an alphabetized listing of the
names for every installed package on your system.

To what package does ‘/usr/bin/time’ belong?

slideshow.end();

X-WINDOWS,
PRINTERS

Unrelated topics joined at last in an epic presentation you
won’t soon forget!

ACTUALLY...

There isn’t that much exciting or epic about the Linux+
objectives for X Windows and Printers..

X WINDOWS

X Windows was developed in the 1980’s to provide an
intelligent GUI system for UNIX.

It is an extremely simple client/server model, that is
exceptionally easy to extend, hence it’s power and world-
wide adoption.

XFREE86

XFree86 was the first open source clone of the X Window
system, released in 1991.

XFree86 formed the de facto GUI platform for Linux, and
indeed all of X Windows development for the ‘90s and into
the early 2000’s

Unfortunately, in 2004 the XFree86 project adopted a
license change which GNU did not particularly care for, and
almost all distributors switched to X.Org.

X.ORG

The X.Org Server stepped into the picture in 2004 as a
splinter off of the XFree86 project.

Since they didn’t muck with the license, most distributors
jumped over to X.Org for their X Windows needs, and to this
day X.Org remains the GUI platform of choice for Linux
implementations.

LAYERS

X Windows is built on a layered concept:

X Server

Window Manager

Desktop

Also, a display manager runs to provide login services.

WINDOW MANAGERS

Special type of X Clients which encapsulate other clients,
allowing them to be moved, resized, or “iconified.” They also
provide the desktop theme, configurable menus, panel
utilities, and session management. Common managers
include metacity, kwin and twm. These window managers
provide the core functionality of the GUI.

Generally a desktop is run in addition to the window
manager, though twm is sometimes provided as a fallback if
a desktop won’t start

DESKTOPS

Fully integrated graphical environments, sitting on top of a
window manager. Usually provides copy/paste features, lots
of extra tools/utilities to run and configure a graphical
environment. The two big guys are GNOME and KDE.

DISPLAY MANAGER

X equivalent of the text-based login program. Three
common managers are xdm, gdm and kdm. Display
managers are usually started by the init process in run-
level 5 from the /etc/X11/prefdm script or similar.

X FONT SERVER

X Windows is a large and complicated piece of software.
The way it handles fonts is no exception.

xfs: X Windows Font Server. Supplies fonts to the X
Windows server

ACCESSIBILITY

X supports a full compliment of accessibility features to make it
more usable to those with disabilities. A few common features
include:

Sticky Keys

Mouse Keys

Braille Display

On-Screen Keyboards

Screen Readers

CONFIGURATION

Configuring X Windows often requires at least Bachelors in
Computer Science with a Minor in Great Luck.

The main configuration file for X.Org is xorg.conf, and
XFree86 is XF86Config.

Reading the associated man pages is a must.

Relying on the GUI configuration tools to help with X
Windows configs is a Good Idea, and one Linux+ supports.

PRINTING

There are two printer management systems in UNIX.

The old system is lpd - the Line Printer Daemon. This suite

has been around for ages, and uses commands such as lpr,

lpq, lpc and lprm to initiate and manage print jobs.

The new, and preferred printing system for Linux, is CUPS -
the Common Unix Printing System.

CUPS

CUPS tools and commands:

lpstat: used to view status of configured printers

lp: Create a print request

cancel: Cancel a pending print request

lpadmin: printer access control

PRINTER CONTROL

Printing under CUPS is a two-step process.

First, a job is spooled or queued for printing in the print spool.

Second, the cups daemon pulls jobs from the print queue and
feeds them to the appropriate printer.

Access to the print queue is managed with the accept and

reject commands

Whether cupsd hands print jobs to the printer is controlled with

the enable and disable commands.

CONFIGURING
PRINTERS

Configuring printers under lpd is painful due to the
exceptionally terse and cryptic configuration files.

CUPS is slightly more friendly

Either way, configuration is best performed with GUI tools,
according to the Linux+ objectives.

I whole-heartedly support this notion because 1) configuring
printers by hand can be painful and 2) it’s so exceptionally
rare that you need to print from a linux system that it isn’t
worth wrestling with those config formats. :)

slideshow.end();

TROUBLESHOOTING
Or, what to do when the $h1t hits the fan

OVERVIEW

Troubleshooting is a thorough methodology used to track
down the cause of problem.

Keywords: thorough and methodology

Without a thorough and exhaustive approach, the issue
might be overlooked

Without a strong and methodical approach, the issue may be
misdiagnosed

TROUBLESHOOTING
KEYS

Most Important: Only change one thing at a time

Check #1 most likely cause: You

Check logs for error messages

After that, check configuration and permissions

If all else fails, slowly, piece by piece, start removing
complexity from the system to narrow down the problem area.

DOCUMENT EVERYTHING

LOGS

One of the easiest places to find the cause of a problem is in
the log files.

Log files store informational messages from software. The
types of messages include debug information, status
information, warnings, errors and more.

Some applications manage their own log files. Others use
the system-wide logging package...

SYSLOG

syslog - The system logger. A framework consisting of a library, a
daemon, a configuration file and logs.

Any application can use the library and log messages through
syslog with simple function calls.

Log messages consist of 3 parts:

Facility

Level

Message

SYSLOG

The facility describes what part of the operating system
generated the message, and is selected by the software:

auth, authpriv, cron, daemon, ftp, kern, lpr, mail, news,
security, syslog, user, uucp, local0-local7

The level represents the importance of the message, and is
also chosen by the software:

emergency, alert, critical, error, warning, notice, info,
debug

/ETC/SYSLOG.CONF

/etc/syslog.conf defines where all of the log messages should go.
Destinations include files, screens of logged in users, console, other syslog
servers.

Basic file format:

facility.level destination

Examples:

*.err /dev/console

mail.* /var/log/maillog

*.info;mail.none;authpriv.none /var/log/messages

/VAR/LOG

maillog: messages from the email subsystem

secure: authentication and security messages

cron: cron messages

boot.log: boot messages

messages: catch-all

SYSLOG EXAMPLES

LOGS

As mentioned earlier, not all software uses the syslog
framework to handle it’s logging. Quite a bit of software
manages it’s own logs.

This can make it difficult to track down all of the log
locations on an unfamiliar system. The best way to handle
this is to start from the init scripts...

LOCATING
APPLICATION LOGS

To track down the log file location for an application, you need
to find it’s configuration file so you can see where the logs are
being written.

Of course, finding the configuration file might be just as
difficult, so it’s best to start at the source.

init starts all of the system services, and so there is an init
script somewhere that is starting up the application in
question.

The init script almost always references the configuration file

LOCATING
APPLICATION LOGS

Now that the configuration file location is known, it only
takes a few moments to scan through it and find out where
logs are being written.

As for the format of the log file, that’s completely dependent
on the application. Some will be similar to syslog, others,
like Apache or Qmail, will be completely foreign looking.

Fortunately, a little common sense and judicious application
of Google Ointment will get the information you seek.

EXERCISES

Take a few minutes to browse through the various logs in /var/log.
Familiarize yourself with the kinds of information available.

Browse the man page for syslog.conf

WHEN LOGS FAIL...

Looking through logs is all fine and dandy, but really that’s a
best case scenario. Your software and hardware rarely come
out and announce problems and solutions in the log files.
No, it’s not that easy!

More often, users will encounter symptoms of a problem,
and you, as the BOFH (hopefully not yet!), will be tasked
with finding and fixing the issue.

TROUBLESHOOTING
TOOLS

Troubleshooting can be a mystical art, and fully exploring
it’s details is best left to a class in it’s own right.

For now, a discussion of several tools to help the process of
troubleshooting will have to suffice.

This list does not include network troubleshooting tools.
Those tools will be covered in the networking lectures.

UPTIME

uptime: Reports system uptime along with load averages.

Load Average: Average number of processes in run queue that
are blocked.

uptime reports three values: the load averaged over the last 1

minute, 5 minutes and 15 minutes. This is useful to get an
idea of the load trend on the system.

Example:

[root@dev1 ~]# uptime
 16:09:55 up 682 days, 10:11, 1 user, load average: 0.00, 0.01, 0.00
[root@dev1 ~]#

FREE

free: reports on memory and swap usage

buffers: I/O buffers, directory cache

cached: filesystem cache (data)

Example:

[root@dev1 ~]# free
 total used free shared buffers cached
Mem: 262316 214228 48088 0 1168 41728
-/+ buffers/cache: 171332 90984
Swap: 524280 74564 449716
[root@dev1 ~]#

W

w: Displays an uptime report, followed by a breakdown of all
logged-in users and what process they are running

JCPU: Combined CPU time of all processes attached to the
terminal (foreground and background)

PCPU: CPU time of foreground process, listed in “what” column

Example:

[root@dev1 ~]# w
 16:26:42 up 682 days, 10:28, 2 users, load average: 0.02, 0.05, 0.02
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root pts/0 216-110-93-126.s 16:00 3:57 0.01s 0.01s -bash
root pts/9 216-110-93-126.s 16:22 0.00s 0.01s 0.00s w
[root@dev1 ~]#

VMSTAT

vmstat: Snapshot report covering several primary statistics.

procs: number of running and blocked processes

swap: swapped in and swapped out blocks of memory, per second

io: blocks in and blocks out read/written per second

system: interrupts and context switches per second

cpu: user, system, idle, wait and time-stolen from a VM

[root@dev1 ~]# vmstat
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 0 0 74564 3608 4456 70156 0 0 0 2 0 0 0 0 100 0 0
[root@dev1 ~]#

TOP

top: Self-updating tool displays combination summary at top,

followed by ordered list of processes. Fully customizable.

The summary includes uptime information, memory
breakdowns, CPU utilization and process state summaries

The process display can be customized and sorted to suit need

top - 16:39:32 up 682 days, 10:41, 2 users, load average: 0.01, 0.00, 0.00
Tasks: 118 total, 1 running, 116 sleeping, 1 stopped, 0 zombie
Cpu(s): 0.1%us, 0.0%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.1%st
Mem: 262316k total, 258024k used, 4292k free, 7380k buffers
Swap: 524280k total, 74564k used, 449716k free, 67808k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1 root 15 0 10316 648 592 S 0 0.2 0:06.24 init
 2 root RT 0 0 0 0 S 0 0.0 0:04.88 migration/0
 3 root 34 19 0 0 0 S 0 0.0 0:00.19 ksoftirqd/0

DF

df: lists filesystem utilization

Breaks down size and use information for each mounted
filesystem

-h is useful option to display in “human-friendly” format

[root@dev1 ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 9.4G 7.2G 1.8G 81% /
none 129M 0 129M 0% /dev/shm
[root@dev1 ~]#

LDD, LDCONFIG

ldd: List library dependencies

ldconfig: Update library location database

/etc/ld.so.conf and /etc/ld.so.conf.d/*.conf
for list of pathnames to search for libraries, creates
database for dynamic linker

[root@dev1 ~]# ldd /bin/bash
! libtermcap.so.2 => /lib64/libtermcap.so.2 (0x00002ac044572000)
! libdl.so.2 => /lib64/libdl.so.2 (0x00002ac044775000)
! libc.so.6 => /lib64/libc.so.6 (0x00002ac044979000)
! /lib64/ld-linux-x86-64.so.2 (0x00002ac044357000)
[root@dev1 ~]# cat /etc/ld.so.conf.d/mysql-x86_64.conf
/usr/lib64/mysql
[root@dev1 ~]# ldconfig
[root@dev1 ~]#

ULIMIT

ulimit: Sets resource limits

Can limit open files, memory use, cpu time, subprocesses
and more.

[root@dev1 ~]# ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
max nice (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 2112
max locked memory (kbytes, -l) 32
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
max rt priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 2112
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
[root@dev1 ~]#

IOSTAT

iostat: IO statistics report

Part of the sysstat package; not always installed

Allows for drilldown into the IO system to view real time
metrics on IO operations per filesystem

[root@dev1 ~]# iostat -x
Linux 2.6.18-xen (dev1) ! 12/10/09

avg-cpu: %user %nice %system %iowait %steal %idle
 0.05 0.00 0.00 0.03 0.07 99.84

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda1 0.00 1.68 0.01 0.55 0.14 17.83 32.12 0.03 54.01 2.89 0.16
sda2 0.00 0.00 0.00 0.00 0.01 0.01 35.26 0.00 80.51 4.95 0.00

[root@dev1 ~]#

LSUSB

lsusb: List USB bus

Generates a listing of devices on the USB bus

Consider -v option for detailed information

[root@localhost ~]# lsusb
Bus 003 Device 001: ID 0000:0000
Bus 004 Device 001: ID 0000:0000
Bus 005 Device 001: ID 0000:0000
Bus 001 Device 001: ID 0000:0000
Bus 002 Device 001: ID 0000:0000

LSPCI

lspci: List PCI bus

Generates a listing of devices on the PCI bus

Consider -v option for detailed information

[root@localhost ~]# lspci
00:00.0 Host bridge: Intel Corporation 82945G/GZ/P/PL Memory Controller Hub (rev 02)
00:02.0 VGA compatible controller: Intel Corporation 82945G/GZ Integrated Graphics Controller (rev 02)
00:1b.0 Audio device: Intel Corporation N10/ICH 7 Family High Definition Audio Controller (rev 01)
00:1c.0 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 1 (rev 01)
00:1c.1 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 2 (rev 01)
...

EXERCISES

Spend a few minutes playing with the various troubleshooting
commands covered previously:

top, df, free, iostat, vmstat, uptime, w, ulimit

HEAVY ARTILLERY

Now to discuss some of the more powerful troubleshooting
tools

Not for the faint of heart :)

/PROC/*

The /proc folder contains copious amounts of information useful
for troubleshooting. Some examples:

/proc/meminfo: Memory utilization breakdown

/proc/devices: Mapping major numbers to drivers

/proc/dma: dma channel assignments

/proc/ioports: io port assignments

See the manpage for proc for more information and descriptions

/PROC/*

Also in the /proc folder is detailed information on every
process on the system.

Details on process status, environment, commandline,
and more can be obtained

Read the proc manpage - tons of information available

through /proc

/SYS/*

sysfs was introduced with the 2.6 kernel to abstract and
organize details about the devices and drivers attached to
the kernel.

Information can be read from and written to the virtual
filesystem to control various aspects of the drivers.

Several kernel features make use of sysfs, including udev
and HAL.

UDEV/HAL

udev is the new (2.6+) device driver manager for the kernel.

udev completely manages the /dev folder, and as hardware is

added and removed, updates the /dev names accordingly.

A series of complex rules controls how udev works, and can be
configured to allow for persistent and/or dynamic device
naming.

HAL is deprecated now, and it’s features integrated into udev,

but it originally communicated hardware events to Desktops
using D-Bus to provide UI reactions to hardware events.

DEBUGFS

debugfs: Very powerful filesystem debugging tool.

Allows direct visualization and manipulation of the
filesystem internals

Extremely powerful, extremely dangerous. Duh!

STRACE

strace: Traces each library call a process makes

Extremely useful to see what a process is doing

Can find errors, bugs, permission issues and more

Let’s play with it for a few minutes...

slideshow.end();

NETWORKING
Overview

NETWORKING?

Connecting machines and resources for purposes of sharing
and communication

Handled on many different levels, from the physical
mediums doing the connecting to the lofty application layer
providing a service to the end user

NETWORK SANDWICH

If you crack a networking book, they talk about the 7 layer OSI model. Then
immediately tell you to toss that out the window, because the predominant
networking systems of today don’t really follow the model. :)

The layers we really care about in this class include:

Physical - cabled, fiber, wireless

Link - Ethernet, 802.11

Network - IP

Transport - TCP/UDP

Application - HTTP, FTP, SSH, DNS, SMTP, POP3, IMAP, etc, etc, etc

PHYSICAL LAYER

The physical layer specifically defines access to the
communication medium. Generally one of:

Copper (wires) - voltages

Plastic/Glass (fiber) - light pulses

Air (radio waves) - modulated waves

LINK LAYER

The link layer defines access to the physical media, spelling
out procedures for communication, collision handling and
more.

Examples include: Ethernet, Token Ring, FDDI, WiFi

Protocols running at this layer include: ARP, RARP, PPP,
SLIP

LINK LAYER

Ethernet is by far the most common link layer protocol in
use today.

Uses CSMA/CD (Carrier Sense, Multiple Access with
Collision Detection) for media access

Wi-Fi (802.11) is rapidly expanding in popularity and use

Uses CSMA/CA (Carrier Sense, Multiple Access with
Collision Avoidance) for media access

LINK LAYER

The link layer generally defines a physical-level address,
known as the MAC (Media Access Control) address.

Normally hard coded by manufacturer

Guaranteed unique

Allows basic communication at the physical level, on local
networks. To expand into other networks, though, a
virtualized address must be used, which is handled by
the...

NETWORK LAYER

The network layer provides inter-networking capabilities,
bridging multiple LANs.

Most popular protocol is the Internet Protocol (IP), which
provides the virtualized addresses and basic network
communication support.

Supporting protocols include: ICMP, BGP, IGMP, OSPF, RIP

Does not guarantee delivery of messages

Does not track order of message deliveries

TRANSPORT LAYER

Most common: Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) - provides finer grained addressing with ports

TCP - Establishes and manages connections between nodes on a network.

 Guarantees delivery of messages

Guarantees order of delivered messages

Throttles traffic (flow control)

UDP - Connectionless

Best effort delivery; low overhead

PORTS

A port is an address component in TCP and UDP messages
which identifies the service that should receive the message
within the addressed system.

Number from 1-65535

Hundreds of “well-known” ports and corresponding services

defined in /etc/services

Examples:

HTTP: 80, SMTP: 25, POP3: 110, SSH: 22

APPLICATION LAYER

Finally, the application layer is the ‘user’ of the networking services -
leveraging TCP and UDP protocols to shuttle information around the room
or the globe.

Common application layer protocols include:

HTTP (web)

SMTP (sending mail)

POP (reading mail)

SSH (secure shells)

And many, many more

END TO END

Each layer wraps on top of the next, so a message starts at
the application layer as data specific to the application

This data gets wrapped with information for TCP/UDP and
IP layers, providing addressing and transport ability

Wrapped again by Ethernet, providing physical access

Wrapped one more time by physical layer, getting sent out

When received at other end, each layer is unwound as the
message travels “up” the stack on the receiving system

TCP/IP

TCP and IP work hand in hand to run most of the world’s
network communications.

While there isn’t much else to TCP or UDP for this
discussion, there is more to IP

Specifically, addresses...

IP ADDRESSES

The IP address provides the user-configured, routable virtual
address used for communication in and between LAN’s

There are two versions of the IP protocol: version 4 and version 6.

IPv4 is the old guard, developed decades ago and still in use
nearly everywhere. Fairly simple set of features and a 32 bit
address. Will be focus of this discussion.

IPv6 was recently (~10 years ago) ratified to address some of the
shortcomings of IPv4, including security features and a lack of
address space. IPv6 addresses are 128 bits.

IP ADDRESSES

32 bit value (32 1’s and 0’s)

Not easily represented as 32 digits (too much typing!)

Instead, broken into four groups of 8 bits

8 bits can be represented in decimal as 0-255

Hence, the dotted quad is born:

192.168.1.100

THAT’S NOT ALL!

When IPv4 was designed, it included a subnetting ability.

Subnetting allows for grouping and organizing networks
within the IPv4 address space.

The first part of every IP address is designated as the network
address, identifying the subnet to which the IP address
belongs.

The remaining portion of the IP address is known as the host
address and uniquely identifies the addressed node within the
subnet.

SUBNET MASK

Identifying the two components of an IP address is the job of the
subnet mask

A mask is a special number which is compared to another number
using mathematical functions (usually boolean algebra’s AND
operation) to extract information.

A subnet mask is a 32 bit number with a special definition: where
the mask is a 1, it corresponds to the network address within an IP
address, and where it’s a 0, the host address.

Since there are only two components to an IP address, subnet
masks are always start as a series of ones, then switch to zero’s

SUBNET MASKS

Subnet masks are also written as dotted quads. But since
they’re just a series of 1’s, then 0’s, they usually look
something like:

255.255.255.0 or 255.255.192.0

An easier way to express a subnet is to use CIDR notation.
CIDR stands for Classless Inter-Domain Routing, and was
created to address a shortcoming of the IPv4 standard
design - subnet classes.

SUBNET CLASSES

The original IPv4 spec created set network sizes and named them
“classes”.

Class A: 8 bit network address

Class B: 16 bit network address

Class C: 24 bit network address

Class D and Class E: special purpose networks

This was done to define the overall layout of the 32 bit address space.
It quickly became insufficient to support the networks being created,
and CIDR was implemented.

CIDR

CIDR breaks away from class-based subnets and allows for the creation
of arbitrary subnet sizes (still within the overall layout of the 32 bit
address space)

CIDR notation is simpler than dotted quad for subnet masks

A slash, followed by the number of the last bit of the network address.
Example:

/24 - class C - 255.255.255.0

Usually combined with the IP address to form a complete address:

192.168.1.100/24

SAY WHAT?

Networking is a huge and complex topic. Subnetting alone
gets pretty hairy to understand without a lot of background
material.

We can’t get into a long discussion of subnetting, but suffice
it to say that an IP address alone is not enough to define a
machine’s access to the local network. A subnet mask must
also be provided.

For more information, see a google

slideshow.end();

NETWORK CONFIGURATION
AND SERVICES
route add default gw 192.168.0.1

/etc/init.d/apache restart

NETWORK
CONFIGURATION

There are two main approaches to configuring a machine for network
access:

Static configuration

Dynamic configuration

Static configuration uses set parameters for the configuration, which is
known by the machine and the network and never changes. Generally
used with servers.

Dynamic configuration configures network machines on the fly, where a
service on the network provides all configuration parameters to a
machine when it joins the network. Generally used with workstations.

DYNAMIC
CONFIGURATION

Dynamic configuration is the easiest to use.

The machine just needs to set up it’s interfaces with the
DHCP protocol.

DHCP: Dynamic Host Configuration Protocol.

A lease is obtained from the DHCP server, providing all
network configuration details for the client. The lease
expires after some amount of time and is renewed by the
client to maintain network access.

STATIC
CONFIGURATION

Static configuration requires four configuration parameters
in order to allow full network functionality:

IP Address

Netmask

Default Gateway or Router

DNS Server(s)

DNS?

Domain Name Service: This is the glue between network
names and IP addresses.

Remember: Humans like names, computers like numbers.
DNS is a service like so many others, mapping names to
numbers and numbers to names. Mostly a convenience.

Also provides for email functionality, geographic load
balancing and limited service failover capabilities.

STATIC
CONFIGURATION

The first two components of static configuration are IP address
and netmask.

These provide LAN-level access

ifconfig: Network Interface configuration tool

Basic idea:

ifconfig eth0 192.168.0.100 netmask 255.255.255.0

Live examples are good!

GATEWAYS

The third configuration parameter is the default gateway.

Provides access to inter-networking, or moving from just
the local LAN to other LAN’s

route: Kernel routing table tool

Displays and manipulates network routing table

route add default gw 192.168.0.1

More live examples!

DNS SERVERS

Final piece of configuration information.

List of one or more IP addresses which provide the DNS
service, allowing name to IP address mapping

Very simple to configure. Add nameserver lines
to /etc/resolv.conf:

nameserver 192.168.7.15

Also consider /etc/nsswitch.conf

STATIC
CONFIGURATION

Once all four pieces of information are configured on the
system, full network service will be available.

Best practice:

Configure IP address and netmask. Check LAN
connectivity.

Configure default gateway. Check intra-LAN connectivity.

Configure DNS: Check name resolution.

ONE MORE THING...

ifconfig and route directly manipulate the running kernel,
and are not permanent changes to the system. After a
reboot, changes will be lost.

To make IP address, netmask and gateway changes
permanent, you have to edit two configuration files:

/etc/sysconfig/network-services/ifcfg-eth0

/etc/sysconfig/network

Let’s look at these files on our systems...

EXERCISES

Check your current IP address, default route and DNS servers.

Restart networking services using the proper init script.

TCP WRAPPERS

TCP Wrappers was originally written to provide host based
access control for services which did not already include it.

It was one of the first “firewalls” of a sort. :)

Before you can set up tcp_wrappers on a service, you have to
check if the service supports it...

CHECKING TCP
WRAPPER SUPPORT

Determine which binary the application runs as. Check init script or:

which sshd

/usr/sbin/sshd

Check for libwrap support in the binary.

If you see libwrap support in the output, then you can configure access

to the service with tcp_wrappers.

ldd /usr/sbin/sshd | fgrep wrap

libwrap.so.0 => /usr/lib/libwrap.so.0 (0x009c5000)

TCP WRAPPER
OPERATION

If an application is compiled with support for
tcp_wrappers, that application will check connection

attempts against the tcp_wrappers configuration files:

/etc/hosts.allow

/etc/hosts.deny

TCP WRAPPER
OPERATION

These files are parsed in the following order:

The file /etc/hosts.allow is consulted. If the

configuration of this file permits the requested connection,
the connection is immediately allowed.

The file /etc/hosts.deny is consulted. If the
configuration of this file does not permit the requested
connection, the connection is immediately refused.

If the connection is not specifically accepted or rejected in
either file, the connection is permitted.

TCP WRAPPER
CONFIGURATION

The basic syntax for these files is:

<daemon>: <client>

For example, to disable ssh connections from

192.168.2.200, add this line to /etc/hosts.deny:

sshd: 192.168.2.200

FIREWALLS

A firewall is a mechanism for defining rules about valid and
invalid traffic, which then directs what to do with the traffic

In Linux, the firewall implementation is called iptables.

iptables is a very powerful firewall system, providing
extensive flexibility in rule definition and actions.

IPTABLES

IPTables works at the kernel level, just above the network
drivers, to provide several useful features.

Extremely powerful and flexible Layer 2 filtering engine.

NAT support

Port forwarding

And many more

IPTABLES RULE
MATCHING

The IPTables configuration is parsed from top to bottom.

IPTables will respond based on the first match that it finds.

If there is no specific match, the chain policy will apply.

IPTABLES TOOLS

iptables: View/modify current firewall rules

iptables-save: Script to save current firewall rules
 for use with iptables-restore

iptables-restore: Restores iptables-save format
 firewall rules - useful to set up
 firewalls at boot

IPTABLES RULES

When creating a new rule, considerations include:

What chain should the rule apply to?

What is the traffic pattern to look for?

What should happen with the traffic?

IPTABLES CHAINS

INPUT

This chain is responsible for filtering traffic destined for the
local system.

OUTPUT

This chain is responsible for handling outbound traffic.

FORWARD

This chain is responsible for controlling traffic routed between
different interfaces.

IPTABLES RULES

Below are a few examples of possible IPTables match criteria:

incoming interface -i

protocol -p

source ip address -s

destination ip address -d

destination port --dport

IPTABLES RULES

Finally, some examples of what to do with traffic when
matched:

DROP Do not deliver, do not respond

REJECT Do not deliver, send reject notice

ACCEPT Deliver

LOG Just log the packet

IPTABLES RULES

So to summarize the syntax:

iptables

What chain should the rule apply to?

-A INPUT

What is the traffic pattern to look for?

-s 192.168.2.100

What should happen with the traffic?

-j REJECT

LAB

1. Using iptables, configure your server to NOT accept

SMTP connections from the 192.168.1.0/24 network,
EXCEPT for the 192.168.1.2 host.

NETWORK SERVICES

There are hundreds, even thousands of different network
services out there. And each individual service might have
one or a dozen plus applications which can provide the
service.

The big ones, and the ones overviewed in this course:

HTTP, SMTP, SSH, FTP, MySQL

HTTP

Hypertext Transfer Protocol: Used to ship webpages and
associated files across the network.

Popular servers: Apache, IIS, lighttpd

SMTP

Simple Mail Transfer Protocol: Delivers email messages

Popular servers: qmail, sendmail, postfix, exchange

SSH

Secure Shell: Encrypted remote shell access

Server: OpenSSH

Consider: ssh keys, known hosts, authorized hosts

FTP

File Transfer Protocol: Used to move files around the
network

Popular Servers: wu-ftpd, vsftpd

MYSQL

MySQL: Extremely powerful, open-source relational
database management system

MySQL is the server, and the only one, as this service is
completely defined and implemented by the application

NTP

The Network Time Protocol is a very useful and accurate
method to keep your system clock synchronized with time
servers around the world. This is important because:

Timestamps in log files across machine will line up,
allowing for proper analysis and comparison

Cron jobs run at the right time

Knowing the correct time just makes for a happy server

XINETD

xinetd is the extended internet services SUPER daemon. :)

This service acts as a super daemon by listening on key ports
for certain types of requests.

When a request is received, xinetd starts the appropriate
service and then hands of the request so that it can be
handled correctly.

xinetd is configured in /etc/xinetd.conf, the services

that it controls are configured in /etc/xinetd.d/

GPG

gpg: GNU Privacy Guard

Basically, GNU implementation of PGP

Public Key Infrastructure encryption

slideshow.end();

NETWORK
TROUBLESHOOTING

ping!

RESPONSIBILITIES

Networking systems together is often a difficult task, further
complicated by large networks and special requirements.

For this reason, networking is it’s own area of expertise

The network engineer is responsible for everything up to and
including the cable and plug connecting to the server

The systems engineer is responsible for everything within
the server, up to and including the network card interfacing
to the cable.

BASICS

Basic network troubleshooting boils down to verifying three
aspects of network performance:

LAN access

Inter-LAN access

DNS service

Notice the parallels to the last lecture? Indeed!

LAN ACCESS

LAN access means being able to at least talk to another
machine on your subnet.

Obtaining at least this level of access indicates that
everything is working fine with the network card, the device
drivers, the cable and initial point of access to the network

This also verifies the IP address and subnet mask

So how to test? First tool of network troubleshooting!

PING

ping: “Packet Internet Groper”

Using IP/ICMP echo requests and echo replies, times the
response time between two machines.

ping 192.168.0.1

Times reported are Round Trip Times (RTT) and
represent the time between sending a request and
receiving a response.

LAN ACCESS

Using ping, one can verify LAN connectivity by simply
pinging a machine on the LAN.

But what should you ping?

The gateway is a great start! Always on the subnet, and
[should] always be online.

INTER-LAN ACCESS

Checking inter-LAN access verifies the gateway in two ways:

It tests that the gateway itself is working correctly

It also tests that the gateway is correctly configured in the system.

To test, simply ping an IP address in another subnet.

But what to ping?

DNS servers - they’re often times not on the same subnet

Memorize another IP in your network, or a public one: 8.8.8.8

DNS

Checking DNS verifies name to IP mapping

Simple to test: ping a server by name

Pick any server: yahoo.com, google.com, mycompany.com

So long as it’s a name, the DNS system will be tested

MORE TOOLS

Besides ping, there are other network troubleshooting tools
available for more advanced diagnostics:

traceroute: Traces the route a message takes to get
from the source machine to the destination.

netstat: Network statistics - details on open and
recently closed network connections

iptraf: network statistics tool

MORE TOOLS

nmap: Network mapper - useful for seeing what services are
showing on a particular machine

tcpdump: A tool to dump raw network traffic for analysis

ethereal: GUI interface to a tcpdump-like tool

ntop: Top-like command for network connections

ngrep: grep for network connections! :)

EXERCISES

Use ping to check connectivity to rackspace.com.

Traceroute a few sites and review the output.

Use iptables to view your current firewall configuration. Can you work
out what the rules are doing?

slideshow.end();

