TROUBLESHOOTING

Or, what to do when the \$h1t hits the fan

OVERVIEW

- Troubleshooting is a thorough methodology used to track down the cause of problem.
- Keywords: thorough and methodology
- Without a thorough and exhaustive approach, the issue might be overlooked
- Without a strong and methodical approach, the issue may be misdiagnosed

TROUBLESHOOTING KEYS

- Most Important: <u>Only change one thing at a time</u>
- Check #1 most likely cause: You
- Check logs for error messages
- After that, check configuration and permissions
- If all else fails, slowly, piece by piece, start removing complexity from the system to narrow down the problem area.
- DOCUMENT EVERYTHING

LOGS

- One of the easiest places to find the cause of a problem is in the log files.
- Log files store informational messages from software. The types of messages include debug information, status information, warnings, errors and more.
- Some applications manage their own log files. Others use the system-wide logging package...

SYSLOG

- syslog The system logger. A framework consisting of a library, a daemon, a configuration file and logs.
- Any application can use the library and log messages through syslog with simple function calls.
- Log messages consist of 3 parts:
 - Facility
 - Level
 - Message

SYSLOG

- The facility describes what part of the operating system generated the message, and is selected by the software:
 - auth, authpriv, cron, daemon, ftp, kern, lpr, mail, news, security, syslog, user, uucp, localo-local7
- The level represents the importance of the message, and is also chosen by the software:
 - emergency, alert, critical, error, warning, notice, info, debug

/ETC/SYSLOG.CONF

- /etc/syslog.conf defines where all of the log messages should go.
 Destinations include files, screens of logged in users, console, other syslog servers.
- Basic file format:
 - facility.level destination
- Examples:
 - *.err /dev/console
 - mail.* /var/log/maillog
 - *.info;mail.none;authpriv.none

/var/log/messages

/VAR/LOG

- maillog: messages from the email subsystem
- secure: authentication and security messages
- cron: cron messages
- boot.log: boot messages
- messages: catch-all

SYSLOG EXAMPLES

Sunday, September 12, 2010

LOGS

- As mentioned earlier, not all software uses the syslog framework to handle it's logging. Quite a bit of software manages it's own logs.
- This can make it difficult to track down all of the log locations on an unfamiliar system. The best way to handle this is to start from the init scripts...

LOCATING APPLICATION LOGS

- To track down the log file location for an application, you need to find it's configuration file so you can see where the logs are being written.
- Of course, finding the configuration file might be just as difficult, so it's best to start at the source.
- init starts all of the system services, and so there is an init script somewhere that is starting up the application in question.
- The init script almost always references the configuration file

LOCATING APPLICATION LOGS

- Now that the configuration file location is known, it only takes a few moments to scan through it and find out where logs are being written.
- As for the format of the log file, that's completely dependent on the application. Some will be similar to syslog, others, like Apache or Qmail, will be completely foreign looking.
- Fortunately, a little common sense and judicious application of Google Ointment will get the information you seek.

EXERCISES

• Take a few minutes to browse through the various logs in /var/log. Familiarize yourself with the kinds of information available.

Browse the man page for syslog.conf

WHEN LOGS FAIL...

- Looking through logs is all fine and dandy, but really that's a best case scenario. Your software and hardware rarely come out and announce problems and solutions in the log files. No, it's not that easy!
- More often, users will encounter symptoms of a problem, and you, as the BOFH (hopefully not yet!), will be tasked with finding and fixing the issue.

TROUBLESHOOTING TOOLS

- Troubleshooting can be a mystical art, and fully exploring it's details is best left to a class in it's own right.
- For now, a discussion of several tools to help the process of troubleshooting will have to suffice.
- This list does not include network troubleshooting tools. Those tools will be covered in the networking lectures.

UPTIME

- uptime: Reports system uptime along with load averages.
 - <u>Load Average</u>: Average number of processes in run queue that are blocked.
 - uptime reports three values: the load averaged over the last 1 minute, 5 minutes and 15 minutes. This is useful to get an idea of the load trend on the system.
 - Example:

```
[root@dev1 ~]# uptime
  16:09:55 up 682 days, 10:11, 1 user, load average: 0.00, 0.01, 0.00
[root@dev1 ~]#
```

FREE

- free: reports on memory and swap usage
 - buffers: I/O buffers, directory cache
 - cached: filesystem cache (data)

• Example:

	total	used	free	shared	buffers	cached
Mem:	262316	214228	48088	0	1168	41728
-/+ buff	ers/cache:	171332	90984			
Swap:	524280	74564	449716			

- w: Displays an uptime report, followed by a breakdown of all logged-in users and what process they are running
 - JCPU: Combined CPU time of all processes attached to the terminal (foreground and background)
 - PCPU: CPU time of foreground process, listed in "what" column
 - Example:

	ev1 ~]# w 2 up 682		10:28,	2 us	sers, l	oad aver	age: 0.	02, 0.05, (0.02
USER	$TT\overline{Y}$	FROM			LOGIN@	IDLE	JCPU	PCPU WHAT	2
root	pts/0	216-1	10-93-	126.s	16:00	3:57	0.01s	0.01s -bas	sh
root [root@de		216-1	10-93-	126.s	16:22	0.00s	0.01s	0.00s w	

VMSTAT

- vmstat: Snapshot report covering several primary statistics.
 - procs: number of <u>r</u>unning and <u>b</u>locked processes
 - swap: <u>swapped in and swapped out blocks of memory</u>, per second
 - io: <u>b</u>locks <u>in</u> and <u>b</u>locks <u>o</u>ut read/written per second
 - system: interrupts and context switches per second
 - cpu: <u>us</u>er, <u>sy</u>stem, <u>id</u>le, <u>wa</u>it and time-<u>st</u>olen from a VM

		dev1 ~]#				swa	ap	io		syst	tem			-cpu-		
		swpd					-							-		
0	0	74564	3608	4456	70156	0	0	0	2	0	0	0	Ō	100	0	(

TOP

- top: Self-updating tool displays combination summary at top, followed by ordered list of processes. Fully customizable.
 - The summary includes uptime information, memory breakdowns, CPU utilization and process state summaries
 - The process display can be customized and sorted to suit need

Tasks: 118 tota Cpu(s): 0.1%us Mem: 262316k	1, , 0, tota	1 1 .0%s al,	cunning sy, 0. 2580	, 116 0%ni, 24k u	slee 99.8 sed,	₽ }8:	ing, id, (429	1 st 0.0%wa 92k fr	average: 0.01, 0.00, 0.00 opped, 0 zombie , 0.0%hi, 0.0%si, 0.1%st ee, 7380k buffers ee, 67808k cached	
PID USER 1 root 2 root 3 root	15 RT	0 0	0	648 0	592 0	ន ទ	0 0	0.0	TIME+ COMMAND 0:06.24 init 0:04.88 migration/0 0:00.19 ksoftirqd/0	

• df: lists filesystem utilization

Breaks down size and use information for each mounted filesystem

h is useful option to display in "human-friendly" format

n

[root@dev1 ~]# df -h						
Filesystem	Size	Used	Avail	Use%	Mounted	0
/dev/sda1	9.4G	7.2G	1.8G	81%	/	
none	129M	0	129M	08	/dev/shm	l
[root@dev1 ~]#						

LDD, LDCONFIG

- 1dd: List library dependencies
- ldconfig: Update library location database
 - /etc/ld.so.conf and /etc/ld.so.conf.d/*.conf for list of pathnames to search for libraries, creates database for dynamic linker

```
[root@dev1 ~]# ldd /bin/bash
    libtermcap.so.2 => /lib64/libtermcap.so.2 (0x00002ac044572000)
    libdl.so.2 => /lib64/libdl.so.2 (0x00002ac044775000)
    libc.so.6 => /lib64/libc.so.6 (0x00002ac044979000)
    /lib64/ld-linux-x86-64.so.2 (0x00002ac044357000)
[root@dev1 ~]# cat /etc/ld.so.conf.d/mysql-x86_64.conf
/usr/lib64/mysql
[root@dev1 ~]# ldconfig
[root@dev1 ~]#
```

ULIMIT

• ulimit: Sets resource limits

• Can limit open files, memory use, cpu time, subprocesses and more.

[root@dev1 ~]# ulimi [.]	t -a	
core file size	(blocks, -c)	0
data seg size	(kbytes, -d)	unlimited
max nice	(-e)	0
file size	(blocks, -f)	unlimited
pending signals	(-i)	2112
max locked memory		
max memory size	(kbytes, -m)	
open files	(-n)	
pipe size	(512 bytes, -p)	
POSIX message queues		
max rt priority	(-r)	
stack size	(kbytes, -s)	
cpu time	(seconds, -t)	
max user processes	(-u)	
virtual memory	(kbytes, -v)	
file locks	(-x)	unlimited
[root@dev1 ~]#		

IOSTAT

- iostat: IO statistics report
 - Part of the sysstat package; not always installed
 - Allows for drilldown into the IO system to view real time metrics on IO operations per filesystem

[root@dev Linux 2.6	-			09								
avg-cpu:	%user 0.05	%nice 0.00	-		t %steal 3 0.07							
Device: sda1		rrqm/s 0.00	-	r/s 0.01	w/s r 0.55	sec/s 0.14	wsec/s 17.83	avgrq-sz 32.12	avgqu-sz 0.03	await 54.01	svctm 2.89	%util 0.16
sda1 sda2		0.00				0.01	0.01		0.00	80.51	4.95	0.00
[root@dev	'1 ∼]#											

LSUSB

- lsusb: List USB bus
 - Generates a listing of devices on the USB bus
 - Consider –v option for *detailed* information

[roc	ot@lo	ocalhost	lsusb				
Bus	003	Device	001:	ID	0000:0000		
Bus	004	Device	001:	ID	0000:0000		
Bus	005	Device	001:	ID	0000:0000		
Bus	001	Device	001:	ID	0000:0000		
Bus	002	Device	001:	ID	0000:0000		

LSPCI

- lspci: List PCI bus
 - Generates a listing of devices on the PCI bus
 - Consider –v option for *detailed* information

[root@localhost ~]# lspci

00:00.0 Host bridge: Intel Corporation 82945G/GZ/P/PL Memory Controller Hub (rev 02) 02)02.0 VGA compatible controller: Intel Corporation 82945G/GZ Integrated Graphics Controller (rev 00:1b.0 Audio device: Intel Corporation N10/ICH 7 Family High Definition Audio Controller (rev 01) 00:1c.0 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 1 (rev 01) 00:1c.1 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 2 (rev 01)

EXERCISES

• Spend a few minutes playing with the various troubleshooting commands covered previously:

• top, df, free, iostat, vmstat, uptime, w, ulimit

HEAVY ARTILLERY

- Now to discuss some of the more powerful troubleshooting tools
- Not for the faint of heart :)

/PROC/*

- The /proc folder contains copious amounts of information useful for troubleshooting. Some examples:
 - /proc/meminfo: Memory utilization breakdown
 - /proc/devices: Mapping major numbers to drivers
 - /proc/dma: dma channel assignments
 - /proc/ioports: io port assignments
 - See the manpage for proc for more information and descriptions

- Also in the /proc folder is detailed information on every process on the system.
 - Details on process status, environment, commandline, and more can be obtained
- Read the proc manpage tons of information available through /proc

/SYS/*

- sysfs was introduced with the 2.6 kernel to abstract and organize details about the devices and drivers attached to the kernel.
- Information can be read from and written to the virtual filesystem to control various aspects of the drivers.
- Several kernel features make use of sysfs, including udev and HAL.

UDEV/HAL

- udev is the new (2.6+) device driver *manager* for the kernel.
- udev completely manages the /dev folder, and as hardware is added and removed, updates the /dev names accordingly.
- A series of complex rules controls how udev works, and can be configured to allow for persistent and/or dynamic device naming.
- HAL is deprecated now, and it's features integrated into udev, but it originally communicated hardware events to Desktops using D-Bus to provide UI reactions to hardware events.

DEBUGFS

- debugfs: Very powerful filesystem debugging tool.
 - Allows direct visualization and manipulation of the filesystem internals
 - Extremely powerful, extremely dangerous. Duh!

STRACE

- strace: Traces each library call a process makes
 - Extremely useful to see what a process is doing
 - Can find errors, bugs, permission issues and more
 - Let's play with it for a few minutes...

slideshow.end();

Sunday, September 12, 2010