
FILESYSTEMS
Mmmm crunchy

Sunday, September 12, 2010

PURPOSE

So all this data...

How to organize? Whose job?

Filesystems!

Sunday, September 12, 2010

Drive

OVERVIEW

Boot Block Block
Group 0

Block
Group 1 ... Block

Group n

On the physical drive, information is stored in blocks

The first block is always the boot block

The rest of the blocks are pooled and organized into block
groups

Sunday, September 12, 2010

Block Group

BLOCK GROUPS

Super
Block

Group
Descriptors

Block
Bitmap

Inode
Bitmap

Inode
Table

Each block groups contains a copy of the super block and
descriptions of all the block groups

The superblock holds information on the entire filesystem

Block and inode bitmaps provide fast lookup information on
free and allocated blocks and inodes

Data
Blocks

Sunday, September 12, 2010

Block Group

BLOCK GROUPS

Super
Block

Group
Descriptors

Block
Bitmap

Inode
Bitmap

Inode
Table

The inode table holds all of the inodes (more on inodes in a
minute!)

The data blocks contain the actual data that is contained in
the files on the filesystem

Data
Blocks

Sunday, September 12, 2010

WOW, WHAT?

Don’t worry - what’s important to understand is the inode
and it’s relationship with data blocks.

Superblocks, block groups, bitmaps and tables are important
to know about, but their details are beyond this course

Sunday, September 12, 2010

INODES

Inodes, or Information Nodes, hold all of the meta
information for a file (or directory! those are just special
kinds of files!)

Details about ownership, size, permissions, times, ACLs and
more are stored in the inode.

But most importantly, the inode points to data blocks which
store the contents of the file.

Sunday, September 12, 2010

WHAT ABOUT THE
FILE NAME?

Good question! You would think it would be stored in the
inode, but it’s not! That’s where directories come in...

A directory is a special type of file whose contents (in the
data blocks!) is a list of name/inode pairs.

There are many reasons to do it this way, including
performance, simplicity and hard link capability

Sunday, September 12, 2010

LET’S DIAGRAM THIS
OUT

It’s easier to handle questions on the whiteboard ;)

Sunday, September 12, 2010

ANY OTHER
QUESTIONS?

Bueller? Bueller?

Sunday, September 12, 2010

FILE TYPES

So far, the presentation has covered regular files and
directories. There are other file types:

Soft (symbolic) links

Named pipes and sockets

Device files (block and character)

Sunday, September 12, 2010

PERMISSIONS

Linux supports 3 main types of access on a file:

read: View the contents

write: Modify the contents and metadata

execute: “Run” the contents

Actually, it’s slightly more complex because it’s different for
files and directories...

Sunday, September 12, 2010

PERMISSIONS

Files Directories

Read

Write

Execute

View the contents List contents

Change the contents/
metadata

Create/delete entries,
change metadata

“Run” the contents
Operate with

directory as CWD

Sunday, September 12, 2010

AWESOME... SO?

Combining these permissions allows for the most common
access levels:

Read only

Read/Write

Execute

etc

Now to add a little more granularity, users and groups...

Sunday, September 12, 2010

OWNERSHIP

All files are associated with one user and one group. This
creates the foundation for the main meat of the security
infrastructure in the Linux (and Unix) operating system.

When a process attempts an operation on a file, the user and
group of the process (because every process is associated
with one user and one group! surprise!) are compared with
the user and group of the file, which determines what level
of permissions is granted or denied on the file...

Sunday, September 12, 2010

PUTTING IT ALL
TOGETHER...

Every file has 3 levels of permissions:

User

Group

Other

When a process seeks access, the process user is compared
to the file user - if they match, the process gets the User
permissions. Next Group. If no match, Other level access

Sunday, September 12, 2010

THE TRIPLE OF
TRIPLES

All of the permission information is neatly summarized with
9 characters:

rwxrwxrwx

The presence of the letter indicates the permission is
granted, a hyphen in it’s place indicates the permission is
denied. Read only: r--r--r--

U
ser

G
roup

O
ther

Sunday, September 12, 2010

SPECIAL PERMISSIONS

There are a few special permissions available:

Set User ID: Used on executables. When the file is “run”,
it runs as the user that owns the file.

Set Group ID: Same as SetUID, but for the group.

Sticky Bit: Interesting story about the name and history,
but nowadays, used on group/other writable directories to
protect contents of directory by limiting write ability to
only be allowed if accessing user matches user on file.

Sunday, September 12, 2010

SPECIAL PERMISSIONS

ls uses a simple format to display the special permissions:

SetUID: rwsrwxrwx

SetGID: rwxrwsrwx

Sticky: rwxrwxrwt

Note that a lowercase letter is used if the underlying execute
bit is set, otherwise it will be an uppercase letter

SetUID without execute set for user: rwSrwxrwx

Sunday, September 12, 2010

CHANGING
OWNERSHIP

Two commands are available for changing the ownership of
a file:

chown: Change Owner - changes the user owner of a file

chown bob memo.txt

chgrp: Change Group - changes group owner of file

chgrp mgmt memo.txt

Sunday, September 12, 2010

CHOWN IT UP

chown can actually change the group owner as well, so you

don’t need to bother messing with chgrp

chown :mgmt memo.txt

You can do both at once, in fact!

chown bob:mgmt memo.txt

Sunday, September 12, 2010

CHANGING
PERMISSIONS

Changing permissions is slightly more involved. The
command is chmod (change mode)

There are two basic ways to represent the permissions:

human friendly

octal

Sunday, September 12, 2010

HUMAN FRIENDLY
CHMOD

When using human friendly permission specification, you
just need to specify what level permission you want to
change, how you want to change it, and what the
permissions are..

A table will clear up the mud...

Sunday, September 12, 2010

HUMAN FRIENDLY
CHMOD

Who? How? What?

Symbols

Explanation

u, g, o +, -, = r, w, x, s, t

user, group,
other

add, subtract,
set

read, write,
execute, set id,

sticky

Sunday, September 12, 2010

SO...

Examples:

chmod u+x file

chmod go-r file

chmod u=rw,go= file

Yes, you can combine “equations” to make different changes
by separating them with commas, as in the last example

Sunday, September 12, 2010

OCTAL?

Octal refer to a base for a numbering system. Namely, base
8. Humans think and count in base 10, decimal. Computers
work in base 2 (binary) and sometimes base 16
(hexadecimal). Octal is just another one, useful for
permissions

Short of a long, grueling discussion of numbering systems,
you’re going to have to just do some memorization here...

Sunday, September 12, 2010

OCTAL!

Octal Binary Permissions

0 000 ---

1 001 --x

2 010 -w-

3 011 -wx

4 100 r--

5 101 r-x

6 110 rw-

7 111 rwx

Sunday, September 12, 2010

OCTAL

Each octal digit fully represents all three primary
permissions, so to specify all the basic permission levels for
a file, all you need are 3 octal digits (user, group, other)!

chmod 777 file

chmod 755 file

chmod 644 file

chmod 000 file

Sunday, September 12, 2010

EXERCISES

Add write permissions for everyone to ‘file1’. Change the owner to
‘user’ and the group to ‘user’. (It won’t change, but if you did it right
you won’t get an error message)

Explain the following permissions: rw-r-----

What’s special about inode #2?

What is an inode?

Sunday, September 12, 2010

LINKS

Linux filesystems support two types of links, hard and soft

Soft links are the easiest to understand, and have cousins in
most operating systems, which makes them familiar

After discussing soft links, we will tackle hard links

Sunday, September 12, 2010

SOFT LINKS

A soft (or symbolic) link is like a shortcut in windows: it’s a
file that simply “points” to another file.

In Linux, the pathname “pointed to” (source) is stored in
the data blocks of the soft link (target)

A soft link is an actual file, consuming an inode and using
data blocks to store whatever pathname it’s pointing to

Sunday, September 12, 2010

SOFT LINKS

To create a soft link, use the ln command with the -s option:

ln -s memo.txt link-to-memo.txt

In this example, memo.txt is the source and link-to-
memo.txt is the target

This command creates a new file, link-to-memo.txt,
of type link, which points to memo.txt

Sunday, September 12, 2010

SOFT LINK TRIVIA

Since soft links merely store a pathname (absolute or
relative), they can link to anything, anywhere. Local
filesystem, other filesystems, network filesystems,
removable media filesystems. They can even point to invalid
pathnames! The kernel cares not!

Removing a soft link does not remove the file pointed to,
only the link file.

Soft links do not have permissions themselves (no need!)

Sunday, September 12, 2010

HARD LINKS

With the foundation formed from the first dozen slides of
this lecture, understanding hard links should not be
difficult. Just a new concept to wrangle.

A hard link is simply one of the name/inode pairs in a
directory. Though when we think about link, we think of
another access point to the file.

Technically, all files are hard linked - via the directories.

By default, there is only one of these links...

Sunday, September 12, 2010

HARD LINK TRIVIA

When a new hard link is created, it simply adds another
reference (filename) in a directory to that inode (file)

Removing a hard link does not remove the file unless it was
the only hard link to that inode

Hard links, due to their nature with inodes and directories,
only operate within a filesystem - you can not create a hard
link from one filesystem to another

How do permissions work?

Sunday, September 12, 2010

EXERCISES

In your home directory, create a soft link to ‘file1’. Verify the link by
cat-ing the contents out. Compare the inode numbers.

In ‘test’, create a hard link to ‘file1’. Verify the link by cat-ing the
contents out and also compare inode numbers.

Why would you use a hard link instead of a soft link?

Which type of link can point across filesystems?

Sunday, September 12, 2010

EDITING FILES

Time for a Nerd Holy War

Editor of choice, anyone? (TUI only - if anyone throws
down with a GUI editor, you’ve failed the class already!)

In my opinion, vi (or vim) wins =)

emacs is great, powerful and fast, but it’s just not common
enough. Plus, the control-x madness is, well, madness! ;)

Sunday, September 12, 2010

VI DEMONSTRATION
Emacs users, bite your tongues!

Sunday, September 12, 2010

slideshow.end();

Sunday, September 12, 2010

keynote:/Users/nisburgh/Alamo/Linux%2B/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Linux%2B/Presentations/Outline.key

