
SHELL SCRIPTING,
CROND, ATD

Saturday, August 14, 2010

SHELL SCRIPTING

Shell scripting involves placing a series of shell commands in a
file for later re-use.

Simple shell scripts simply run command after command,
as if the user typed them in at the command line

More complex shell scripts actually make decisions about
what commands need to be run, and might even repeat
certain sequences to accomplish some task

Scripts start executing at the top and stop when there are no
more commands to execute or when exit is called.

Saturday, August 14, 2010

EXAMPLE SHELL
SCRIPT

Here is an example of a very simple shell script:

echo “Hello, what is your name?”
read NAME
echo “Hello $NAME, it’s nice to meet you!”
echo -n “The current time is: “
date

Using the echo command, this script asks a question.

The read command accepts input from the user and stores
it in the environment variable NAME

The script finishes up with a couple more echo statements,
greeting the user and announcing today’s date

Saturday, August 14, 2010

SHELL SCRIPTING

If we put the example in a file called myscript, we can
execute the script as:

bash myscript

bash will open myscript and execute each line as if the
user had typed it in manually.

[root@localhost ~]# bash myscript
Hello, what is your name?
Linus
Hello Linus, it’s nice to meet you!
The current time is: Sun Nov 29 09:39:33 CST 2009
[root@localhost ~]#

Saturday, August 14, 2010

INTERPRETERS

In the previous example, we put five commands in a regular
file and fed the filename to bash on the command line,
which in turn executed the commands.

Running in this way, bash operated as an interpreter.

Reading each line of the file, bash would interpret the
words and perform some action.

There are many interpreted languages available for
scripting, including all shells, python, ruby, perl, etc.

Saturday, August 14, 2010

EXECUTING SCRIPTS

To run a script, feed the file to the appropriate interpreter:

bash mybashscript

perl myperlscript

This works fine, but sometimes it’s more user-friendly to allow the
script to be run directly, removing the need for an external call to
the interpreter...

./mybashscript

myperlscript

Saturday, August 14, 2010

SHEBANG

This is accomplished with the shebang (#!). Also known as
a hash bang, pound bang or hashpling.

When the kernel is asked to execute a file, it must either be
machine code, or a file that starts with the shebang
sequence. If the first two characters of the file are a hash
mark and an exclamation mark, the rest of the line is
expected to be an absolute pathname for an interpreter,
which will then be invoked to “run” the file as a script.

Saturday, August 14, 2010

SHEBANG

So, add an appropriate shebang to the example:

#!/bin/bash
echo “Hello, what is your name?”
read NAME
echo “Hello $NAME, it’s nice to meet you!”
echo -n “The current time is: “
date

[root@localhost ~]# chmod 755 myscript
[root@localhost ~]# ./myscript
Hello, what is your name?
Linus
Hello Linus, it’s nice to meet you!
The current time is: Sun Nov 29 09:39:33 CST 2009
[root@localhost ~]#

Then add execute permissions and the script can be run
directly:

Saturday, August 14, 2010

SCRIPTING

There is of course quite a bit more to shell scripting than can
be covered in this course. There are a few more structures
you can use for looping, and dozens of special
metacharacters for achieving all kinds of results.

With this introduction, though, you should be able to read
through light shell scripts and have a handle on what’s going
on, as well as be able to write simple ones on your own.

Saturday, August 14, 2010

CROND
Scheduled fun

Saturday, August 14, 2010

OVERVIEW

crond is the cron daemon. Cron provides for the ability to
execute commands on a regular basis.

Generally used to run hourly, daily and weekly type system
maintenance scripts.

Also useful to run reports, cleanup jobs and much, much
more.

Saturday, August 14, 2010

USING CRON

Cron is controlled through crontab files.

There are system-wide crons, accessible under /etc/cron.*

Every user has their own crontab, accessible through the
crontab command

Saturday, August 14, 2010

SYSTEM CRONS

/etc/crontab defines the system cron jobs.

Many distributions use the run-parts script to execute all
scripts found in /etc/cron.hourly, /etc/cron.daily, etc on
the appropriate schedule.

/etc/crontab defines the times for each schedule: hourly,
daily, weekly, monthly

Saturday, August 14, 2010

CRONTAB

crontab: View, edit or remove crontabs

The -l option prints the crontab. The -e option opens
the crontab for editing. The -r option removes the
crontab.

Root can work with the crontab for any user by specifying
the username on the command line:

crontab -e -u bob

Saturday, August 14, 2010

CRONTAB SYNTAX

There are two main components to a crontab entry:

The timespec specifies when the command should be run

The command is what gets executed every time the
timespec is matched

Saturday, August 14, 2010

CRONTAB TIMESPECS

The timespec is broken down into 5 fields, separated by
spaces:

minute hour day-of-month month day-of-week

Each field can contain a number, a range of numbers, a
comma-separated list of numbers, an asterisk or a number
slash division rate

Mostly self-explanatory - some examples will help...

Saturday, August 14, 2010

TIMESPEC EXAMPLES

0 23 * * * 11pm every day

30 * * * 1-5 30 minutes after every hour, M-F

0 7 1 * * 7am, first of every month

* * * * * Every single minute

0,10,20,30,40,50 * * * * Every 10 minutes

*/5 8-17 * * 1-5 Every 5 minutes, 8am-5pm, M-F

Saturday, August 14, 2010

EXAMPLE CRONTAB

There are various additional options and features available
to the cron system. Check the man pages for reference:

cron, crontab (sections 1 and 5)

01 4 * * * /usr/local/bin/restart-webserver
00 8 1 * * /usr/bin/mail-report boss@mycompany.com
*/5 * * * * /monitor/bin/check-site -e admin@mycompany.com -o /var/log/check.log

Saturday, August 14, 2010

mailto:boss@mycompany.com
mailto:boss@mycompany.com
mailto:admin@mycompany.com
mailto:admin@mycompany.com

ATD

Saturday, August 14, 2010

ATD OVERVIEW

atd is a simple daemon that executes one-off jobs at a
certain time.

To create an at job:

at <time>

Then you enter all of the commands you want run at the
given time, and finish by typing ctrl-d

Saturday, August 14, 2010

ATD

atd is not commonly used these days, but if it’s there is can
be useful in some situations..

If editing the firewall on a machine over the network, it’s
sometimes nice to put a simple “reset” so if you lock
yourself out, you’ll be able to get back in the machine:

[root@localhost ~]# at now + 10 minutes
at> iptables-save > /iptables.backup
at> iptables -F
at> <EOT>
job 1 at 2009-11-30 10:44 a root
[root@localhost ~]#

Saturday, August 14, 2010

ATD

Some additional commands to use with the at system:

atq: Displays list of at jobs

atrm: Removes given at job from queue

Saturday, August 14, 2010

slideshow.end();

Saturday, August 14, 2010

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

