PROCESSES

At least they’re not ISO-9001 processes

STRUCTURE

e In Linux, a Process wraps up everything that is needed to
know about a running piece of software

e The meta information not only includes the machine code
for the software, but also things like what user/group pair is
running the process, when it was started, what the command
line was, etc.

e In fact, here’s a short list of the pertinent parts of a process:

Saturday, August 14, 2010

STRUCTURE

e PID

e PPID

e UID/GID o TTY

e Command e Environment

e Start Time e Priority

o CPU Time ® Nice Level

Saturday, August 14, 2010

® Process 1D

e Linux uses this number to uniquely identify every process on
the computer

e Number from 1-32768 (default - can change the maximum)

e Assigns new PIDs incrementally by 1, 2 or 4

e Loops back to 1 after hitting the maximum

Saturday, August 14, 2010

e Parent Process ID

e PID of the process that started this one

e What? Side track: The Fork & Exec model!

Saturday, August 14, 2010

THE FORK AND EXEC
MODEL

More whiteboard goodness!

Fork & Exec Model:

Saturday, August 14, 2010

UID/GID

® The User and Group running the process

e Very important! Defines access and permissions to file
system and operating system.

e Inherited from Parent process unless:

e SetUID/SetGID bits on executable

e Completes the Circle of Security

Saturday, August 14, 2010

COMMAND

® The command (and arguments) for the process

e Identifies the executable running, as well as the arguments
passed at invocation

Saturday, August 14, 2010

START & CPU TIME

e Start Time tracks when the process was started

e CPU Time tracks time the process actually spends running
on the CPU

e Current Working Directory

e ‘nuf said

e Inherited from parent process

Saturday, August 14, 2010

e State of the process:

e Runnable

e Stopped

e Blocked - Interruptible
e Blocked - Non-interruptible

e Zombie

Saturday, August 14, 2010

e Connected terminal

e Mostly informational

e Inherited from parent process

Saturday, August 14, 2010

ENVIRONMENT

e Every process has it’s own Environment

e Inherited from parent process

PRIORITY

e The priority is a read-only value showing the current priority
assigned by the scheduler

e Ranges from 0-99, with higher values representing higher
priorities.

e The scheduler constantly adjusts priorities to balance
efficiency, performance and responsiveness

Saturday, August 14, 2010

NICE LEVEL

e The nice level represents one influence on the calculations
the kernel uses when assigning priorities.

e Originally designed and named to allow users to be “nice” to
other users of the system by assigning a higher nice value to
an intensive process, which in turn lowers it’s priority.

e Ranges from -20 to 19. Default nice level is o.

e Only root can assign negative nice values.

® See nice and renice commands

Saturday, August 14, 2010

LISTING PROCESSES

e ps: List of current processes

o pstree: Generate hierarchical view of processes

o Examples:
e ps View all processes started by logged in user
e ps aux View details of all processes on system

o pstree View tree of all processes on system

Saturday, August 14, 2010

PROCESS STATES

e There are 5 basic process states:
e Runnable
e Stopped
e Blocked/Sleeping - interrutible
e Blocked/Sleeping - non-interrutible

e Zombie/Defunct

Saturday, August 14, 2010

RUNNABLE

e This means the process is running, or is set to run

e Remember: Linux is a multi-tasking operating system, so it’s
hard to see exactly when processes are running (switched so
quickly), so the state is runnable, indicating that the
scheduler will provide CPU time when it’s available

Saturday, August 14, 2010

STOPPED

e Opposite of Runnable - the process will not get CPU time

e Nothing happens to the process - it’s still in memory, poised,
ready to go. But when it’s put in the stopped state, the
scheduler will not put it on the CPU

e Files/network connections remain open, but network
connections may drop after a time (timeout)

Saturday, August 14, 2010

INTERRUPTIBLE
SLEEP

e The process is waiting for some event - perhaps an alarm
from a sleep system call, perhaps a signal or other external
event

e Interruptible means that other processes/events can break
the sleep

NON-INTERRUPTIBLE
SLEEP

e This sleep state is generally caused by 10 operations -
accessing a drive, communicating with the network, etc.

e Non-interruptible means that other processes/events can
not break this sleep.

e This process is unable to respond to signals.

Saturday, August 14, 2010

ZOMBIE/DEFUNCT

e An exited process whose parent did not wait () on the child

e Does not consume resources beyond a PID and meta
information storage (< 1k generally)

e Generally caused by two situations:
e Bug in software

e Overly taxed machine

Saturday, August 14, 2010

SIGNALS

e First form of Interprocess Communication (IPC)

e A signal is a message sent to a process to indicate events or
other conditions. The signal itself is the message - there
around three dozen defined signals...

Saturday, August 14, 2010

COMMON SIGNALS

e HUP - Hangup o SEGV - Segmentation Fault

e INT - Interrupt o ALRM - Alarm

o QUIT - Quit e TERM - Terminate

o ILL - Illegal Instruction e STOP - Stop

o ABRT - Abort e CONT - Continue

o KILL - Kill e FPE - Floating Point
Exception

Saturday, August 14, 2010

SENDING SIGNALS

e kill: Send a signal to a process. Default signal: TERM
o Examples:

e kill 457

e kill -9 2359

e lcliNEnE CONE] S5

slideshow.end();

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

