
SHELLS
Yeah, the hard part of Linux

Saturday, August 14, 2010

THE BIG LOOP

In order to master the shell, you have to understand it’s
inner workings

The first concept is The Big Loop

Saturday, August 14, 2010

1. Print prompt, await user input

2. Parse and verify input; on error, loop

3. Perform requested operation (execute command, built-in)

4. Loop

THE BIG LOOP

Saturday, August 14, 2010

MORE ON STEP 2

Step 2: parse and verify input

Very important step, includes:

Syntax checking, command identification, metacharacter
substitutions and operations

Saturday, August 14, 2010

SYNTAX

<command> [options] [arguments]

Everything is separated with white space

Options are just a special interpretation of arguments,
generally identified with a prefixed hyphen

POSIX options (or long options) use a double hyphen
prefix, and often spell out the option with a word rather than
just a letter (--verbose instead of -v)

Saturday, August 14, 2010

QUOTING

Generally, arguments are separated with whitespace, but
sometimes whitespace needs to be part of the argument
itself (spaces in filenames, for example). Consider:

command filename with spaces

Without any guidance, the shell will interpret this input as
a command with 3 arguments.

Quoting is the easiest way to guide the shell in this matter.
There are two forms...

Saturday, August 14, 2010

SINGLE QUOTES

Single quotes are the simplest to use:

command ‘filename with spaces’

The quotes let the shell know where an argument starts and
stops (quotes not included), and it doesn’t bother with
what’s between the markers - it is interpreted strictly as data

Hence, this line would be interpreted as a command with
one argument, filename with spaces

Saturday, August 14, 2010

DOUBLE QUOTES

Double quotes follow single syntax, but interpret differently:

command “filename with spaces”

The quotes let the shell know where an argument starts and
stops, but the data in between is loosely examined for
metacharacters. More on that in a minute.

So, this line would also be interpreted as a command with
one argument, filename with spaces

Saturday, August 14, 2010

METACHARACTERS

A metacharacter is any character that has more than one
meaning or interpretation.

For example, you just learned about two of them: the single
and double quotes. In normal context, they denote
endpoints for arguments, not actual quote characters

But what if you need a quote in your argument value, say a
filename with a single quote like: smith’s

Saturday, August 14, 2010

ESCAPING

The quick and simple way to do that is with the escape
metacharacter, the backslash: \

command smith\’s

The escape character tells the shell to interpret the character
following the backslash as a normal character, rather than a
metacharacter

This allows you to use metacharacters as regular characters

Saturday, August 14, 2010

BASIC COMMANDS

who: Lists currently logged in users

uptime: Statistics about machine usage and run time

echo: Prints the given arguments to the screen

date: Print current date and time

exit: Terminate current shell session

reset: Reset terminal state to default settings

Saturday, August 14, 2010

HIERARCHIES

Data is stored in files

Files are grouped and
organized in Directories,
creating a tree structure

The filesystem begins at
root, represented as: /

The Standard Hierarchy
provides basic organization

Saturday, August 14, 2010

WORKING DIRECTORY

Operations within the shell generally gather input from files
and output information to files, so the shell tracks a
“working directory” to ease the file specifications, and have a
default location to output files if one is not provided

pwd: Print Working Directory

cd: Change [working] Directory

Saturday, August 14, 2010

PATHNAMES

A pathname specifies the exact location of a file or directory
within the filesystem.

Understanding pathnames is critical to a happy shell life

There are two types of pathnames: absolute and relative

Saturday, August 14, 2010

ABSOLUTE PATHNAME

An absolute pathname uses the root of the filesystem to fix
the starting location for the path search.

/etc/passwd

Starting from /, descend into the etc folder, then locate the

file named passwd

The key is the leading slash - exactly fixing the starting point

Saturday, August 14, 2010

RELATIVE PATHNAME

Relative pathnames only specify a file’s location with respect
to a working directory. The path is relative to the current
working directory. Relative pathnames never start with a /.

memos/january.txt

From within the current directory (see? the starting point is
the current directory - not always / like for absolute),
descend into the memos folder and locate the file
january.txt

Saturday, August 14, 2010

COMPARISON

Absolute Pathnames

Always start with a /

Search starts from /

Always refers to exactly one
file

Relative Pathnames

Never start with a /

Search starts from CWD

Can refer to any number of
files (dependent on CWD)

Saturday, August 14, 2010

BASIC COMMANDS

mkdir: Create a new directory

touch: Update modification and access times of given file

spell: Spell check given file (or input on stdin)

mv: Move a file from one location to another (rename)

cp: Copy a file to another location

rm: Remove (delete) a file

ls: Display listing (contents) of a directory

Saturday, August 14, 2010

WILDCARDS

Wildcards are another set of metacharacters which provide a
shorthand notation for specifying large groups of files

There are 3 basic pathname wildcards:

*

?

[set]

Saturday, August 14, 2010

WILDCARD: *

The * wildcard is the easiest to understand, and most
common

Definition: Match 0 or more characters. Any characters.

Examples:

*

a*

*.txt

Saturday, August 14, 2010

WILDCARD: ?

The ? wildcard comes in handy now and again

Definition: Matches exactly 1 character. Can be any
character, but there must be exactly 1.

Examples:

file?.txt

log-????

????*

Saturday, August 14, 2010

WILDCARD: [SET]

The bracketed set wildcard can be very useful when
filenames are following a specific pattern

Definition: Match exactly 1 character, character must be
from the set. Great flexibility in specifying the set

Examples:

log-2009-1[012]-*

[a-zA-Z]*

Saturday, August 14, 2010

WILDCARD: [SET]

Each desired character can be directly typed into the set:

[012345]

Ranges are acceptable. Starting point must be “less” than
ending point. Starting/ending case must match for letters:

[0-5]

[d-h]

[N-Z]

Saturday, August 14, 2010

WILDCARD: [SET]

Mix and match:

[0-9a-zA-Z]

[c-fikmp]

If a hyphen is needed to be part of the set, specify it first:

[-acg0-4]

Saturday, August 14, 2010

WILDCARD: [SET]

You can also specify an “anti” set. Anything listed in the set
will not match. Simply start set with !

[!0-9]

If an exclamation mark is needed in a set, specify it
anywhere after the first character:

[0-9!bkg-i]

Saturday, August 14, 2010

ENVIRONMENTS

Every piece of running software (a process - more on that
later) has it’s own environment

The environment is simply a collection of key->value pairs

The key is [traditionally capitalized] letters, numbers and
symbols to uniquely identify the variable

The value is a string

Saturday, August 14, 2010

ENVIRONMENTS

Examples:

PATH=/usr/local/bin:/usr/bin:/bin:/sbin

HOME=/home/bob

TOTAL=348

Saturday, August 14, 2010

ENVIRONMENTS

To create a new variable (or change an existing one):

TOTAL=100

You type the name of the variable, an equals sign, and the
value. Don’t forget about quoting if needed!

Saturday, August 14, 2010

ENVIRONMENTS

Once a variable is created, you can view it’s value with the $
metacharacter. The easiest way is to use echo:

echo $TOTAL

The $ metacharacter asks the shell to look up the value for
the named variable, and replace everything with that value.

So after parsing, the above command becomes:

echo 100

Saturday, August 14, 2010

ENVIRONMENTS

Environment variables are local to the containing process,
but you can mark variables as “exported”, which allows them
to be passed down to subprocesses (child processes)

Once a variable is created, to mark it exported:

export TOTAL

Note the lack of the $ metacharacter!

To stop exporting: export -n TOTAL

Saturday, August 14, 2010

ENVIRONMENTS

set: Displays all environment variables and values

env: Displays exported environment variables and values

To remove a variable completely:

unset TOTAL

A note about the $ metacharacter: if the variable does not
exist, the entire statement evaluates to the empty string

Saturday, August 14, 2010

MAN PAGES

Man pages, short for Manual Pages, represent the online
help system in the Linux environment

Simple interface:

man <command>

man <library>

man <function>

man <file>

Saturday, August 14, 2010

MAN COMMAND

The man command locates the requested manpage and
formats it for display

Manpages can be written to cover any topic, but generally
are available for commands, libraries, function calls, kernel
modules and configuration files.

For example, to learn more about the who command:

man who

Saturday, August 14, 2010

MANPAGES

Follow fairly standard format: Name, synopsis, description,
examples, see also. Additional parts include author,
copyright, bugs and more.

Manpages are organized into “sections”, grouping user
commands into one section, system libraries in another, and
so forth.

The See Also section is invaluable!

Saturday, August 14, 2010

INFOPAGES

There is some movement to convert the aging manpage
system into a newer format, the infopage system.

The info system provides a more advanced interface,
supporting links, split windows and more. Accessing
infopages is the same:

info <topic>

Once within the info system, type ? for help on the interface

The conversion is still in it’s infancy

Saturday, August 14, 2010

EXERCISES

In your home directory, create a directory called ‘test’.

Read the man page on man.

List all files in your home directory that start with an ‘a’.

Display your PATH environment variable and explain it’s purpose.

Saturday, August 14, 2010

INPUT AND OUTPUT

STDIN

STDOUT

STDERR

Command: who

0

1

2

This is the “normal” flow of data

Saturday, August 14, 2010

REDIRECTION

Changing the standard flow of input and output

Output redirection sends one or more of the output streams
to files on disk

Input redirection feeds a file from disk as the input to a
process

Saturday, August 14, 2010

OUTPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: who

0

1

2

who > who.out

who.out

Simple output redirection. Creates/overwrites file.

Saturday, August 14, 2010

OUTPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: who

0

1

2

who 2> who.err

who.err

Simple stderr output redirection. Creates/overwrites file.

Saturday, August 14, 2010

OUTPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: who

0

1

2

who > who.out 2> who.err

who.err

who.out

Combined out & err redirection. Creates/overwrites files.

File names must be different!

Saturday, August 14, 2010

OUTPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: who

0

1

2

who > who.all 2>&1

who.all

Combined out & err redirection. Creates/overwrites files.

Only one file name, used for both output streams

Saturday, August 14, 2010

OUTPUT REDIRECTION

All of the previous examples would create the output file if it
did not exist, and if it did, would completely overwrite the
existing file with the output of the command.

Adding an extra > would turn the redirection functions into
appending mode:

who >> who.out

who 2>> who.err

who >> who.all 2>&1

Saturday, August 14, 2010

OUTPUT REDIRECTION
SUMMARY

> file

capture stdout to file

overwrites

> is equivalent to 1>

2> file
capture stderr to file

overwrites

> file 2> file2

capture stdout to file

capture stderr to file2

overwrites

Saturday, August 14, 2010

OUTPUT REDIRECTION
SUMMARY

>> file

capture stdout to file

appends

>> is equivalent to 1>>

2>> file
capture stderr to file

appends

>> file 2>> file2

capture stdout to file

capture stderr to file2

appends

Saturday, August 14, 2010

OUTPUT REDIRECTION
SUMMARY

> file 2>&1

capture stdout to file

capture stderr to file

overwrites

>> file 2>&1

capture stdout to file

capture stderr to file

appends

Saturday, August 14, 2010

INPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: cat

0

1

2

Simple input redirection

cat < who.all

who.all

Saturday, August 14, 2010

REDIRECTION

Input redirection isn’t common anymore, now that most
commands can handle their own file I/O

Input and output redirection can be combined:

cat < who.all > cat.who.all

cat < who.all 2> cat.who.all.err

cat < who.all > cat.who.all.all 2>&1

Saturday, August 14, 2010

EXERCISES

From your home directory, use echo and output redirection to create a
file in the ‘test’ folder called ‘file1’ with the contents ‘helllo’. Use a
relative pathname.

Use input redirection and the spell command to spell check ‘file1’.

Spell check ‘file1’ again, saving the output to a file using redirection.

What is the absolute pathname for ‘file1’?

Saturday, August 14, 2010

PIPES

Sweet, beautiful, powerful pipes! My favorite shell feature!

In concept, pipes are very, very simple

A pipe operates on two commands, connecting stdout of the
command on the left to stdin of the command on the right

who | wc -l

Let’s look at a picture of this...

Saturday, August 14, 2010

PIPES

STDIN

STDOUT

STDERR

Command: who
1

The output of who is piped into the input of wc -l

This produces a count of the current user sessions

who | wc -l

20 STDIN

STDOUT

STDERR

Command: wc
1

20

This is the Pipe

Saturday, August 14, 2010

PIPES

Pipes can be chained as long as needed, and can also be
combined with redirection:

who | fgrep bob | wc -l > bob.sessions

It’s even possible to intermix pipes and redirection! Just
keep your streams straight in your head:

who 2> who.errors | fgrep bob 2>&1 | wc -l

Try to diagram the previous command!

Saturday, August 14, 2010

TEE

A very useful tool when working with pipes is tee

tee takes one argument, a filename, and will feed all input
from stdin to the file, while simultaneously feeding the
output to stdout

In effect, tee forks its input stream, sending one copy to a
file on disk, and another copy to stdout

Very useful tool!

Saturday, August 14, 2010

EXERCISES

Spell check ‘file1’ and, using tee, output the results to the screen and a
file on disk.

Read the man page on wc. Use this information to count the number
of misspelled words in /etc/nsswitch.conf

Use echo and redirection to append a few more lines to ‘file1’ with
information about yourself.

Saturday, August 14, 2010

slideshow.end();

Saturday, August 14, 2010

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

