
INTRO TO LINUX
Basic Linux proficiency in 24 hours

Rev: 2014-02-24

TECH SPECS

24 hours, lecture/lab format

Hours: 8:30 - 5:00

Lunch: 11:45 - 1:00

Breaks every hour or so.. :)

ABOUT THE
INSTRUCTOR

Nathan Isburgh

instructor@edgecloud.com

Unix user 15+ years, teaching it 10+ years

RHCE, CISSP

Forgetful, goofy, patient :)

mailto:instructor@edgecloud.com

ABOUT THE COLLEGE

Rackspace Parking Sticker = good to go

Breakroom downstairs - labeled “Laundry”

Sodas - bottles in machine ($1.25) or cans in mini-fridge
($0.50)

Cafeteria

Do not speed!

No smoking anywhere

ABOUT THE STUDENTS

Name?

Time served, I mean employed, at Rackspace?

Department?

Unix/Linux skill level?

What most interests you about Linux?

EXPECTATIONS OF
STUDENTS

Basic foundation in computer use

Ask Questions!

Complete the labs

Email if you’re going to be late/miss class

Have fun

Learn something

HARDWARE

freedigitalphotos.net

CORE COMPONENTS

Motherboard

CPU

RAM

Expansion slots

http://en.kioskea.net/contents/pc/carte-mere.php3

CORE COMPONENTS

Hard drive

Removable media drives

Power supply

Case

PERIPHERALS

Keyboard

Mouse

Monitor/Video

Sound

Printer

RAID ARRAYS

Redundant Array of Inexpensive Disks

Stringing together two or more drives

Provides mix of performance and reliability improvements

Configured by level...

RAID LEVELS

0 (Spanning): Drives simply combined, one after another, to
form one large, continuous storage space. No performance
or reliability advantages. Used to get large amounts of
storage space for cheap.

0 (Striping): Drives are combined into one large storage
space, but the data is split up and striped across the disks.
Provides improved read and write performance through
parallel operations. Still no reliability benefit.

RAID LEVELS

1 (Mirroring): Each drive in the set is a complete copy of the
data. Read performance benefit through parallel read
operations. Exceptional reliability benefit through
redundancy. Storage limited to size of smallest member.

5 (Stripe w/ parity): Most common. Similar to Striped RAID
0, but adds parity information, allowing for improved
reliability. Minimum 3 members to operate, but can tolerate
a drive failure without data loss! Improved performance
through parallel operations.

RAID LEVELS

6 (Stripe w/ double parity): Same as RAID5, but with
doubled parity information, tolerating up to two drive
failures in set.

Levels are often combined (nested) to get the best of
different levels: 01, 10, 15, 50, 51, 16, 60, 61

Nested levels are expensive to implement, but can provide
extremely high reliability and performance numbers.

Common nested levels include...

RAID LEVELS

10 (Stripe Set across mirrors): A set that stripes data across
two or more RAID1 mirrors.

50 (Striped Stripe with Parity Set): Data is striped across
two or more RAID5 sets.

51 (Mirrored Strip with Parity Set): Data is mirrored across
two or more RAID5 sets.

BACKUP MEDIA

Optical discs: Simple, tough, cheap, small. Limited size.
Easy to use.

Hard drives: Expensive, sensitive. Rapid restore times. Still
fairly limited size. Easy to use - often a mirror of the data.

Tapes: Cheap, reliable, tough. Huge sizes available. Most
common backup media for any serious need. Generally
requires backup software for managements.

LINUX
The Big Picture

http://www.gnu.org/graphics/gnu-slash-linux.html

http://www.gnu.org/graphics/gnu-slash-linux.html

Center of machine

Scheduler, memory
manager, device drivers

Shared software routines,
system calls

User level software
Applications

OVERVIEW

Libraries

Kernel

End User
xkcd.com

Hardwar
e

DISTRIBUTIONS

The “Linux” part of Linux is the kernel and supporting
drivers. By itself, it does not represent a complete operating
system.

Thousands of open source projects combine their powers to
form the One True Operating System we know as Linux. :)

Distributors pick and choose from all of this software,
combine it with a Linux kernel and package it up into
something called a distribution. Common ones include...

DISTRIBUTIONS

Redhat: One of the oldest and most popular. Originally
offered two levels: personal and enterprise. Decided to focus
on enterprise offerings, so dropped Red Hat Personal and
created the Fedora Project, a community driven entity to
produce a personal distribution of Linux.

Fedora: Aims to release quarterly “Core” distributions.
Focuses on up to date software packages and kernels.

CentOS: Takes Redhat Enterprise Linux, strips the branding
and provides free version.

DISTRIBUTIONS

Debian: Popular, flexible, apt packaging system

Ubuntu: Popular for desktops, easy to use, based on Debian

Gentoo: Focus on performance through targeted, on-the-fly
compilation. Unique, advanced, powerful.

Slackware: One of the first distributions. Meant for
advanced users - focus on stability and simplicity.

100’s of distributions! See http://www.linux.org/dist/

LINUX IS...

Multiuser

One of the primary goals of
UNIX was to maximize the
utilization of the computer
(they weren’t cheap then!)

The concept allows
multiple users to perform
tasks at the same time

LINUX IS...

Multitasking

Allowing multiple users
necessitates the ability to
do multiple things at once.

Implemented through a
complex scheduling system

SHELLS
Yeah, the hard part of Linux

THE BIG LOOP

In order to master the shell, you have to understand it’s
inner workings

The first concept is The Big Loop

1. Print prompt, await user input

2. Parse and verify input; on error, loop

3. Perform requested operation (execute command, built-in)

4. Loop

THE BIG LOOP

MORE ON STEP 2

Step 2: parse and verify input

Very important step, includes:

Syntax checking, command identification, metacharacter
substitutions and operations

SYNTAX

<command> [options] [arguments]!

Everything is separated with white space

The command says what to do, and has a default behavior

The options say how to do it, when behavior beyond the default is necessary

Regular options are generally prefixed with a hyphen

POSIX options (or long options) use a double hyphen prefix, and often
spell out the option with a word rather than just a letter (--verbose
instead of -v)

The arguments specify what to act upon

QUOTING

Generally, arguments are separated with whitespace, but
sometimes whitespace needs to be part of the argument
itself (spaces in filenames, for example). Consider:

command filename with spaces!

Without any guidance, the shell will interpret this input as
a command with 3 arguments.

Quoting is the easiest way to guide the shell in this matter.
There are two forms...

SINGLE QUOTES

Single quotes are the simplest to use:

command ‘filename with spaces’!

The quotes let the shell know where an argument starts and
stops (quotes not included), and it doesn’t bother with
what’s between the markers - it is interpreted strictly as data

Hence, this line would be interpreted as a command with
one argument, filename with spaces

DOUBLE QUOTES

Double quotes follow single syntax, but interpret differently:

command “filename with spaces”!

The quotes let the shell know where an argument starts and
stops, but the data in between is loosely examined for
metacharacters. More on that in a minute.

So, this line would also be interpreted as a command with
one argument, filename with spaces

METACHARACTERS

A metacharacter is any character that has more than one
meaning or interpretation.

For example, you just learned about two of them: the single
and double quotes. In normal context, they denote
endpoints for arguments, not actual quote characters

But what if you need a quote in your argument value, say a
filename with a single quote like: smith’s

ESCAPING

The quick and simple way to do that is with the escape
metacharacter, the backslash: \

command smith\’s!

The escape character tells the shell to interpret the character
following the backslash as a normal character, rather than a
metacharacter

This allows you to use metacharacters as regular characters

BASIC COMMANDS

who: Lists currently logged in users

uptime: Statistics about machine usage and run time

echo: Prints the given arguments to the screen

date: Print current date and time

exit: Terminate current shell session

reset: Reset terminal state to default settings

HIERARCHIES

Data is stored in files

Files are grouped and
organized in Directories,
creating a tree structure

The filesystem begins at
root, represented as: /

The Standard Hierarchy
provides basic organization

WORKING DIRECTORY

Operations within the shell generally gather input from files
and output information to files, so the shell tracks a
“working directory” to ease the file specifications, and have a
default location to output files if one is not provided

pwd: Print Working Directory

cd: Change [working] Directory

PATHNAMES

A pathname specifies the exact location of a file or directory
within the filesystem.

Understanding pathnames is critical to a happy shell life

There are two types of pathnames: absolute and relative

ABSOLUTE PATHNAME

An absolute pathname uses the root of the filesystem to fix
the starting location for the path search.

/etc/passwd!

Starting from /, descend into the etc folder, then locate the
file named passwd

The key is the leading slash - exactly fixing the starting point

RELATIVE PATHNAME

Relative pathnames only specify a file’s location with respect
to a working directory. The path is relative to the current
working directory. Relative pathnames never start with a /.

memos/january.txt!

From within the current directory (see? the starting point is
the current directory - not always / like for absolute),
descend into the memos folder and locate the file
january.txt

COMPARISON

Absolute Pathnames

Always start with a /

Search starts from /

Always refers to exactly one
file

!

!

Relative Pathnames

Never start with a /

Search starts from CWD

Can refer to any number of
files (dependent on CWD)

BASIC COMMANDS
mkdir: Create a new directory

touch: Update modification and access times of given file

spell: Spell check given file (or input on stdin)

mv: Move a file from one location to another (rename)

cp: Copy a file to another location

rm: Remove (delete) a file

ls: Display listing (contents) of a directory

WILDCARDS

Wildcards are another set of metacharacters which provide a
shorthand notation for specifying large groups of files

There are 3 basic pathname wildcards:

*

? See manpage for details

[set] See manpage for details

WILDCARD: *

The * wildcard is the easiest to understand, and most
common

Definition: Match 0 or more characters. Any characters.

Examples:

*!

a*!

*.txt

ENVIRONMENTS

Every piece of running software (a process - more on that
later) has it’s own environment

The environment is simply a collection of key->value pairs

The key is [traditionally capitalized] letters, numbers and
symbols to uniquely identify the variable

The value is a string

ENVIRONMENTS

Examples:

PATH=/usr/local/bin:/usr/bin:/bin:/sbin!

HOME=/home/bob!

TOTAL=348

ENVIRONMENTS

To create a new variable (or change an existing one):

TOTAL=100!

You type the name of the variable, an equals sign, and the
value. Don’t forget about quoting if needed!

ENVIRONMENTS

Once a variable is created, you can view it’s value with the $
metacharacter. The easiest way is to use echo:

echo $TOTAL!

The $ metacharacter asks the shell to look up the value for
the named variable, and replace everything with that value.

So after parsing, the above command becomes:

echo 100

ENVIRONMENTS

Environment variables are local to the containing process,
but you can mark variables as “exported”, which allows them
to be passed down to subprocesses (child processes)

Once a variable is created, to mark it exported:

export TOTAL!

Note the lack of the $ metacharacter!

To stop exporting: export -n TOTAL

ENVIRONMENTS

set: Displays all environment variables and values

env: Displays exported environment variables and values

To remove a variable completely:

unset TOTAL!

A note about the $ metacharacter: if the variable does not
exist, the entire statement evaluates to the empty string

MAN PAGES

Man pages, short for Manual Pages, represent the online help
system in the Linux environment

Simple interface:

man <command>!

man <library>!

man <function>!

man <file>

MAN COMMAND

The man command locates the requested manpage and
formats it for display

Manpages can be written to cover any topic, but generally
are available for commands, libraries, function calls, kernel
modules and configuration files.

For example, to learn more about the who command:

man who

MANPAGES

Follow fairly standard format: Name, synopsis, description,
examples, see also. Additional parts include author,
copyright, bugs and more.

Manpages are organized into “sections”, grouping user
commands into one section, system libraries in another, and
so forth.

The See Also section is invaluable!

INFOPAGES

There is some movement to convert the aging manpage
system into a newer format, the infopage system.

The info system provides a more advanced interface,
supporting links, split windows and more. Accessing
infopages is the same:

info <topic>!

Once within the info system, type ? for help on the interface

The conversion is still in it’s infancy

EXERCISES
In your home directory, create a directory called ‘test’.

Read the man page on man.

List all files in your home directory that start with an ‘a’ (note there
might not be any – create a few with the touch command)

Display your PATH environment variable and explain it’s purpose.

Open a file browser and use it to explore the filesystem. At the same
time, explore the same locations from the command line.

Use this time to get comfortable with pathnames

They are incredibly important!

INPUT AND OUTPUT

STDIN

STDOUT

STDERR

Command: who

0

1

2

This is the “normal” flow of data

REDIRECTION

Changing the standard flow of input and output

Output redirection sends one or more of the output streams
to files on disk

Input redirection feeds a file from disk as the input to a
process

OUTPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: who

0

1

2

who > who.out

who.out

Simple output redirection. Creates/overwrites file.

OUTPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: who

0

1

2

who 2> who.err

who.err

Simple stderr output redirection. Creates/overwrites file.

OUTPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: who

0

1

2

who > who.out 2> who.err

who.err

who.out

Combined out & err redirection. Creates/overwrites files.
File names must be different!

OUTPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: who

0

1

2

who > who.all 2>&1

who.all

Combined out & err redirection. Creates/overwrites files.
Only one file name, used for both output streams

OUTPUT REDIRECTION

All of the previous examples would create the output file if it
did not exist, and if it did, would completely overwrite the
existing file with the output of the command.

Adding an extra > would turn the redirection functions into
appending mode:

who >> who.out

who 2>> who.err

who >> who.all 2>&1

OUTPUT REDIRECTION
SUMMARY

> file

capture stdout to file
overwrites

> is equivalent to 1>

2> file
capture stderr to file
overwrites

> file 2> file2

capture stdout to file

capture stderr to file2
overwrites

OUTPUT REDIRECTION
SUMMARY

>> file

capture stdout to file
appends

>> is equivalent to 1>>

2>> file
capture stderr to file
appends

>> file 2>> file2

capture stdout to file

capture stderr to file2
appends

OUTPUT REDIRECTION
SUMMARY

> file 2>&1

capture stdout to file

capture stderr to file
overwrites

>> file 2>&1

capture stdout to file

capture stderr to file
appends

INPUT REDIRECTION

STDIN

STDOUT

STDERR

Command: cat

0

1

2

Simple input redirection

cat < who.all

who.all

REDIRECTION

Input redirection isn’t common anymore, now that most
commands can handle their own file I/O

Input and output redirection can be combined:

cat < who.all > cat.who.all!

cat < who.all 2> cat.who.all.err!

cat < who.all > cat.who.all.all 2>&1

EXERCISES
From your home directory, use echo and output redirection to create a
file in the ‘test’ folder called ‘file1’ with the contents ‘helllo’. Use a
relative pathname.

Use input redirection and the spell command to spell check ‘file1’.

Spell check ‘file1’ again, saving the output to a file using redirection.

What is the absolute pathname for ‘file1’?

PIPES

Sweet, beautiful, powerful pipes! My favorite shell feature!

In concept, pipes are very, very simple

A pipe operates on two commands, connecting stdout of the
command on the left to stdin of the command on the right

who | wc -l!

Let’s look at a picture of this...

PIPES

STDIN

STDOUT

STDERR

Command: who
1

The output of who is piped into the input of wc -l!

This produces a count of the current user sessions

who | wc -l

20 STDIN

STDOUT

STDERR

Command: wc 1

20

This is the Pipe

PIPES

Pipes can be chained as long as needed, and can also be
combined with redirection:

who | fgrep bob | wc -l > bob.sessions!

It’s even possible to intermix pipes and redirection! Just
keep your streams straight in your head:

who 2> who.errors | fgrep bob 2>&1 | wc -l!

Try to diagram the previous command!

TEE

A very useful tool when working with pipes is tee

tee takes one argument, a filename, and will feed all input
from stdin to the file, while simultaneously feeding the
output to stdout

In effect, tee forks its input stream, sending one copy to a
file on disk, and another copy to stdout

Very useful tool!

EXERCISES

Spell check ‘file1’ and, using tee, output the results to the screen and a
file on disk.

Read the man page on wc. Use this information to count the number
of misspelled words in /etc/nsswitch.conf

Use echo and redirection to append a few more lines to ‘file1’ with
information about yourself.

FILESYSTEMS
Mmmm crunchy

PURPOSE

So all this data...

How to organize? Whose job?

Filesystems!

PERMISSIONS

Linux supports 3 main types of access on a file:

read: View the contents

write: Modify the contents and metadata

execute: “Run” the contents

Actually, it’s slightly more complex because it’s different for
files and directories...

PERMISSIONS

Files Directories

Read View the contents List contents

Write Change the contents/
metadata

Create/delete entries,
change metadata

Execute “Run” the contents Operate with
directory as CWD

AWESOME... SO?

Combining these permissions allows for the most common
access levels:

Read only

Read/Write

Execute

etc

Now to add a little more granularity, users and groups...

OWNERSHIP

All files are associated with one user and one group. This
creates the foundation for the main meat of the security
infrastructure in the Linux (and Unix) operating system.

When a process attempts an operation on a file, the user and
group of the process (because every process is associated
with one user and one group! surprise!) are compared with
the user and group of the file, which determines what level
of permissions is granted or denied on the file...

PUTTING IT ALL
TOGETHER...

Every file has 3 levels of permissions:

User

Group

Other

When a process seeks access, the process user is compared
to the file user - if they match, the process gets the User
permissions. Next Group. If no match, Other level access

THE TRIPLE OF
TRIPLES

All of the permission information is neatly summarized with
9 characters:

rwxrwxrwx!

!

The presence of the letter indicates the permission is
granted, a hyphen in it’s place indicates the permission is
denied. Read only: r--r--r--

User

Group
Other

CHANGING
OWNERSHIP

Two commands are available for changing the ownership of
a file:

chown: Change Owner - changes the user owner of a file

chown bob memo.txt!

chgrp: Change Group - changes group owner of file

chgrp mgmt memo.txt

CHOWN IT UP

chown can actually change the group owner as well, so you
don’t need to bother messing with chgrp

chown :mgmt memo.txt!

You can do both at once, in fact!

chown bob:mgmt memo.txt

CHANGING
PERMISSIONS

Changing permissions is slightly more involved. The
command is chmod (change mode)

There are two basic ways to represent the permissions:

human friendly

octal

HUMAN FRIENDLY
CHMOD

When using human friendly permission specification, you
just need to specify what level permission you want to
change, how you want to change it, and what the
permissions are..

A table will clear up the mud...

HUMAN FRIENDLY
CHMOD

Who? How? What?

Symbols u, g, o +, -, = r, w, x, s, t

Explanation user, group,
other

add, subtract,
set

read, write,
execute, set id,

sticky

SO...

Examples:

chmod u+x file!

chmod go-r file!

chmod u=rw,go= file!

Yes, you can combine “equations” to make different changes
by separating them with commas, as in the last example

OCTAL?

Octal refer to a base for a numbering system. Namely, base
8. Humans think and count in base 10, decimal. Computers
work in base 2 (binary) and sometimes base 16
(hexadecimal). Octal is just another one, useful for
permissions

Short of a long, grueling discussion of numbering systems,
you’re going to have to just do some memorization here...

OCTAL!

Octal Binary Permissions
0 000 ---

1 001 --x

2 010 -w-

3 011 -wx

4 100 r--

5 101 r-x

6 110 rw-

7 111 rwx

OCTAL

Each octal digit fully represents all three primary
permissions, so to specify all the basic permission levels for
a file, all you need are 3 octal digits (user, group, other)!

chmod 777 file!

chmod 755 file!

chmod 644 file!

chmod 000 file

EXERCISES

Add write permissions for everyone to ‘file1’. Change the owner to
‘user’ and the group to ‘user’. (It won’t change, but if you did it right
you won’t get an error message)

Explain the following permissions: rw-r-----

Explain the permissions represented by 644

LINKS

Linux filesystems support two types of links, hard and soft

Soft links are the easiest to understand, and have cousins in
most operating systems, which makes them familiar

Hard links are best explored later in your Linux career

SOFT LINKS

A soft (or symbolic) link is like a shortcut in windows: it’s a
file that simply “points” to another file.

In Linux, the pathname “pointed to” (source) is stored in
the data blocks of the soft link (target)

A soft link is an actual file, consuming an inode and using
data blocks to store whatever pathname it’s pointing to

SOFT LINKS

To create a soft link, use the ln command with the -s option:

ln -s memo.txt link-to-memo.txt!

In this example, memo.txt is the source and link-to-
memo.txt is the target

This command creates a new file, link-to-memo.txt,
of type link, which points to memo.txt

SOFT LINK TRIVIA

Since soft links merely store a pathname (absolute or
relative), they can link to anything, anywhere. Local
filesystem, other filesystems, network filesystems,
removable media filesystems. They can even point to invalid
pathnames! The kernel cares not!

Removing a soft link does not remove the file pointed to,
only the link file.

Soft links do not have permissions themselves (no need!)

EDITING FILES

Time for a Nerd Holy War

Editor of choice, anyone? (TUI only - if anyone throws down
with a GUI editor, you’ve failed the class already!)

In my opinion, vi (or vim) wins =)

emacs is great, powerful and fast, but it’s just not common
enough. Plus, the control-x madness is, well, madness! ;)

For now, you can use nano, but learning vi will be critical if
you intend to further your Linux pursuits

EXERCISES

In your home directory, create a soft link to ‘file1’. Verify the link by
cat-ing the contents out. Compare the inode numbers.

Use nano to edit file1 with some of your observations about Linux so
far

PROCESSES
At least they’re not ISO-9001 processes

STRUCTURE

In Linux, a Process wraps up everything that is needed to
know about a running piece of software

The meta information not only includes the machine code
for the software, but also things like what user/group pair is
running the process, when it was started, what the command
line was, etc.

In fact, here’s a short list of the pertinent parts of a process:

STRUCTURE

PID

PPID

UID/GID

Command

Start Time

CPU Time

CWD

State

TTY

Environment

Priority

Nice Level

PID

Process ID

Linux uses this number to uniquely identify every process on
the computer

Number from 1-32768 (default - can change the maximum)

Assigns new PIDs incrementally by 1, 2 or 4

Loops back to 1 after hitting the maximum

PPID

Parent Process ID

PID of the process that started this one

UID/GID

The User and Group running the process

Very important! Defines access and permissions to file
system and operating system.

Inherited from Parent process unless:

SetUID/SetGID bits on executable

Completes the Circle of Security

COMMAND

The command (and arguments) for the process

Identifies the executable running, as well as the arguments
passed at invocation

START & CPU TIME

Start Time tracks when the process was started

CPU Time tracks time the process actually spends running
on the CPU

CWD

Current Working Directory

‘nuf said

Inherited from parent process

STATE

State of the process:

Runnable

Stopped

Blocked - Interruptible

Blocked - Non-interruptible

Zombie

TTY

Connected terminal

Mostly informational

Inherited from parent process

ENVIRONMENT

Every process has it’s own Environment

Inherited from parent process

PRIORITY

The priority is a read-only value showing the current priority
assigned by the scheduler

Ranges from 0-99, with higher values representing higher
priorities

The scheduler constantly adjusts priorities to balance
efficiency, performance and responsiveness

NICE LEVEL

The nice level represents one influence on the calculations the
kernel uses when assigning priorities

Originally designed and named to allow users to be “nice” to
other users of the system by assigning a higher nice value to
an intensive process, which in turn lowers it’s priority

Ranges from -20 to 19. Default nice level is 0

Only root can assign negative nice values

See nice and renice commands

LISTING PROCESSES

ps: List of current processes

pstree: Generate hierarchical view of processes

Examples:

ps View all processes started by logged in user

ps aux View details of all processes on system

pstree View tree of all processes on system

PROCESS STATES

There are 5 basic process states:

Runnable

Stopped

Blocked/Sleeping - interrutible

Blocked/Sleeping - non-interrutible

Zombie/Defunct

RUNNABLE

This means the process is running, or is set to run

Remember: Linux is a multi-tasking operating system, so it’s
hard to see exactly when processes are running (switched so
quickly), so the state is runnable, indicating that the
scheduler will provide CPU time when it’s available

STOPPED

Opposite of Runnable - the process will not get CPU time

Nothing happens to the process - it’s still in memory, poised,
ready to go. But when it’s put in the stopped state, the
scheduler will not put it on the CPU

Files/network connections remain open, but network
connections may drop after a time (timeout)

INTERRUPTIBLE SLEEP

The process is waiting for some event - perhaps an alarm
from a sleep system call, perhaps a signal or other external
event

Interruptible means that other processes/events can break
the sleep

NON-INTERRUPTIBLE
SLEEP

This sleep state is generally caused by IO operations -
accessing a drive, communicating with the network, etc.

Non-interruptible means that other processes/events can
not break this sleep.

This process is unable to respond to signals.

ZOMBIE/DEFUNCT

Braaaaaaiiiiiiinnnnnssss.. Wait, no, not that kind of zombie.

An exited process whose parent did not wait() on the child

Does not consume resources beyond a PID and meta
information storage (< 1k generally)

Generally caused by two situations:

Bug in software

Overly taxed machine

SIGNALS

First form of Interprocess Communication (IPC)

A signal is a message sent to a process to indicate events or
other conditions. The signal itself is the message - there
around three dozen defined signals...

COMMON SIGNALS

HUP - Hangup

INT - Interrupt

QUIT - Quit

ILL - Illegal Instruction

ABRT - Abort

KILL - Kill

SEGV - Segmentation Fault

ALRM - Alarm

TERM - Terminate

STOP - Stop

CONT - Continue

FPE - Floating Point
Exception

SENDING SIGNALS

kill: Send a signal to a process. Default signal: TERM

Examples:

kill 457!

kill -9 2359!

kill -CONT 1350

USERS & GROUPS,
BACKUPS

Basic System Administration

USERS AND GROUPS

Users and Groups define access to the operating system through
the file permission scheme.

Root is the super user, and the only user with special permissions

Every user is a member of at least one group, which is called their
primary group. The main purpose of this primary relationship is
to define group owner of created files.

Users can have a secondary group membership in as many
groups as needed. These secondary relationships exist to
broaden a user’s access to the files on the system.

CONFIG FILES

User information is stored in two files:

/etc/passwd!

/etc/shadow!

Group information is stored in one file:

/etc/group

/ETC/PASSWD

List of user records, one per line, with columns separated by
colons. Format:

login:x:userid:groupid:gecos:homedir:shell!

Examples:

root:x:0:0:root:/root:/bin/bash!

mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash

/ETC/SHADOW

Similar colon-separated-column list of records:

login:password:password aging fields

Aging fields track dates for password resets, locks, etc

Examples:

root:pB8msP1fCbCqc:13904:0:99999:7:::

nisburgh:vRoPw6a/jQsp.:14466:0:99999:7:::

/ETC/GROUP

Same colon-separated-column list of records format

groupname:grouppassword:groupid:secondarymembers!

Group passwords allow temporary access to a group, are
rarely used and not set up by default

Examples:

daemon:x:2:root,bin,daemon!

apache:x:48:jack,nisburgh

MANAGEMENT

While it is possible to edit the three files directly, it’s easier
and safer to use the management commands to create,
modify and delete users and groups:

useradd, usermod, userdel!

groupadd, groupmod, groupdel

USERADD

useradd: Add a new user to the system

Accepts various arguments to control the settings on the
user account. Most common is the -g option to specify the
primary group of the user, and the -G option to list
secondary group memberships. Examples:

useradd lisa!

useradd -g clowns -G trouble,simpson bart

USERMOD, USERDEL

usermod: Modify a user’s settings. Example:

usermod -G detention bart!

userdel: Remove a user from the system. Main option to
consider is -r, which tells userdel to remove the user’s
home and spool directories. Example:

userdel moe

GROUP COMMANDS

groupadd: Adds a new group to the system. Example:

groupadd bullies!

groupmod: Mainly used to rename a group. Example:

groupmod -n mktg mkg!

groupdel: Remove a group. Example:

groupdel microsoft

PASSWORDS

passwd: Change login password.

Root can change the password for any user on the system

Root can also setup password aging, allowing for timed
password resets and account disabling

passwd is also the preferred way to lock a user account:

passwd -l mary

PASSWORD AGING

To set the maximum lifetime for a user’s password:

passwd -x days login!

When a user’s password has expired, you can set the number
of days it can remain expired before disabling the account
completely:

passwd -i days login

SIDE NOTE: SU AND
SUDO

Best practice states that a user should always log in as a
regular user, then switch to the root user when necessary for
a system administration task. There are two tools available
to do this:

su: switch user. As a regular user, this allows you to
switch to the root account if you know the root password.

sudo: “su do”. Perform an action as root or another user.
If configured for access, you only need your password.
Use visudo to edit configuration.

EXERCISES
Create a new group ‘dev’. Create a new user ‘alice’ as a member of the
‘dev’ group, with a description of “Alice from Dev” and a default shell of
‘/bin/csh’. Use the passwd command to set a password for alice, then
log in as alice and verify her access.

Lock alice’s account and verify she can’t log in anymore. Unlock her
account and verify access once more. Add alice as a secondary member
of the ‘gdm’ group.

Set a maximum password lifetime of 4 weeks for the alice account.
Look at the passwd, shadow and group files.

BACKUPS

Why backup?

Hardware failures

Software failures

[Epic] User failures

Disasters

WHAT TO BACKUP?

At minimum, all user data and intellectual property

At maximum, entire systems, OS and all

In reality, many factors drive what gets backed up:

budget

time

resources

need

WHERE TO BACKUP?

Good question - many, many places

Local online copies

Remote online copies

Offline copies - Disk, Tape

HOW TO BACKUP?

Small scenario:

rsync, tar, burning software, tape drive

Large scenario:

rsync, tar, enterprise backup software, tape libraries

FLATTENING
HIERARCHIES

How to backup a directory? The directory represents an
entire tree of files and directories? How can you put all of
the information necessary to recreate the tree into one file?

tar!

Originally the Tape Archive tool. Used to backup directory
trees to tape. Nowadays more commonly used to “flatten” a
tree into one file.

CREATING A TAR
ARCHIVE

To create a tar archive:

tar cf <tarfile.tar> <file> [file]...!

The c option tells tar to create an archive. The f option is
critical - it tells tar to put the archive in a file on disk, rather
than on a tape device.

You can add the v option (tar cvf) to get verbose output.
Tar will report every file added to the archive.

VIEWING AN ARCHIVE

To view an archive (a table of contents):

tar tf tarfile.tar!

The t option asks tar to print a table of contents of the
archive. If you add the verbose flag (tvf), tar will report
detailed information on each file, similar to the long output
of the ls command.

EXTRACTING AN
ARCHIVE

This is the tricky part of tar, and getting it right requires an
understanding of how tar stores file in the archive.

When an archive is created, the pathnames are stored into
the archive. When you view the table of contents, you’re
viewing the relative pathnames as they would be created on
extraction.

This can sometimes confuse the user, and is best illustrated
with an example...

EXTRACTING AN
ARCHIVE

If tar tf file.tar reports:

memo.txt!

report/!

report/data!

Then when the archive is extracted, the resulting files will be:

CWD/memo.txt!

CWD/report/!

CWD/report/data!

Where CWD represents the current working directory

EXTRACTING AN
ARCHIVE

To extract an archive:

tar xf tarfile.tar!

tarfile.tar will be extracted to the current working
directory, so be careful! Make sure you understand the
contents of the tar file to be sure you don’t accidentally
overwrite existing files.

TAR EXAMPLES
Help remove the mud

EXERCISES
From your home directory, create a tar backup of the test folder.
Name the tar file ‘test.tar’. Verify it is correct by viewing the table of
contents.

Create a new directory in your home folder called ‘temp’. Change into
this directory and extract your test.tar backup file. Can you see the
‘test’ folder and it’s contents?

Browse through the man page for ‘diff’. Use ‘diff -r’ to compare the
original ‘test’ folder with the newly extracted ‘test’ folder. Are there
any differences?

COMPRESSION

Tar files can get quite large, and storing/sharing them
uncompressed wastes a large amount of storage space and
bandwidth.

Enter: compression.

Compression uses complex algorithms to rewrite the
contents of a file in a way that takes up less space, but can be
reversed back to the original contents

COMPRESS

One of the original compression algorithms: the Adaptive
Lempel-Ziv. Not used very much any more, especially in
Linux environment

Achieves 40-50% compression on average

Extension: .Z!

Compress: compress

Decompress: decompress

GZIP

Updated algorithm: Limpel-Ziv 77 (LZ77)

Achieves 60-70% compression on average

Extension: .gz!

Compress: gzip

Decompress: gunzip

BZIP2

Powerful algorithm: Burrows-Wheeler Block Sorting
Huffman Coding

Achieves 50-75% compression on average

Extension: .bz2!

Compress: bzip2

Decompress: bunzip2

TAR + COMPRESSION

Once a tarball has been created, it’s generally compressed
with gzip or bzip2:

gzip -9 tarfile.tar!

bzip2 -9 tarfile.tar!

The -9 option tells the compression tool to maximize
compression efficiency (taking longer). 1-9 are acceptable
values, with -1 indicating minimal efficiency and maximum
speed.

ZIP FILES

Zip files, originally put forward in the DOS/Windows world
via the pkzip tools, and now winzip, are actually a
combination of hierarchy archiving and compression.

Basically, zip files include the features of tar and
compression in one format! Advantages and disadvantages,
of course.

There are open source tools which allow access to creating,
viewing and extracting zip files in the Linux environment.

ZIP

Lots of algorithms implemented

Varying compression ratio depending on algorithms used

Extension: .zip!

Compress: zip

Decompress: unzip

ZIP

Remember, zip files are not just compressed files. The zip
archive actually contains files and directories within it, so
the interface is closer to tar than gzip or bzip2.

Generally, zip files are only encountered in the Linux world
when interacting with the Windows world. Within Linux,
everything is a compressed tarball.

EXERCISES

Make several copies of test.tar and use gzip to compress them. Try
once with compression level 9 and once with compression level 2.
Check the sizes of each.

Use bzip2 to compress one of the copies. Compare it’s size with the
gzip sizes.

TROUBLESHOOTING
Or, what to do when the $h1t hits the fan

OVERVIEW

Troubleshooting is a thorough methodology used to track
down the cause of problem.

Keywords: thorough and methodology

Without a thorough and exhaustive approach, the issue
might be overlooked

Without a strong and methodical approach, the issue may be
misdiagnosed

TROUBLESHOOTING
KEYS

Most Important: Only change one thing at a time

Check #1 most likely cause: You

Check logs for error messages

After that, check configuration and permissions

If all else fails, slowly, piece by piece, start removing
complexity from the system to narrow down the problem area.

DOCUMENT EVERYTHING

LOGS

One of the easiest places to find the cause of a problem is in
the log files.

Log files store informational messages from software. The
types of messages include debug information, status
information, warnings, errors and more.

Some applications manage their own log files. Others use
the system-wide logging package...

SYSLOG

syslog - The system logger. A framework consisting of a library, a
daemon, a configuration file and logs.

Any application can use the library and log messages through
syslog with simple function calls.

Log messages consist of 3 parts:

Facility

Level

Message

SYSLOG

The facility describes what part of the operating system
generated the message, and is selected by the software:

auth, authpriv, cron, daemon, ftp, kern, lpr, mail, news,
security, syslog, user, uucp, local0-local7

The level represents the importance of the message, and is
also chosen by the software:

emergency, alert, critical, error, warning, notice, info,
debug

/ETC/SYSLOG.CONF

/etc/syslog.conf defines where all of the log messages should go.
Destinations include files, screens of logged in users, console, other syslog
servers.

Basic file format:

facility.level destination!

Examples:

*.err /dev/console!

mail.* /var/log/maillog!

*.info;mail.none;authpriv.none /var/log/messages

/VAR/LOG

maillog: messages from the email subsystem

secure: authentication and security messages

cron: cron messages

boot.log: boot messages

messages: catch-all

EXERCISES

Take a few minutes to browse through the various logs in /var/log.
Familiarize yourself with the kinds of information available.

Browse the man page for syslog.conf

WHEN LOGS FAIL...

Looking through logs is all fine and dandy, but really that’s a
best case scenario. Your software and hardware rarely come
out and announce problems and solutions in the log files.
No, it’s not that easy!

More often, users will encounter symptoms of a problem,
and you, as the BOFH (hopefully not yet!), will be tasked
with finding and fixing the issue.

TROUBLESHOOTING
TOOLS

Troubleshooting can be a mystical art, and fully exploring
it’s details is best left to a class in it’s own right.

For now, a discussion of several tools to help the process of
troubleshooting will have to suffice.

This list does not include network troubleshooting tools.
Those tools will be covered in the networking lectures.

UPTIME

uptime: Reports system uptime along with load averages.

Load Average: Average number of processes in run queue that
are blocked.

uptime reports three values: the load averaged over the last 1
minute, 5 minutes and 15 minutes. This is useful to get an idea
of the load trend on the system.

Example:

[root@dev1 ~]# uptime!
 16:09:55 up 682 days, 10:11, 1 user, load average: 0.00, 0.01, 0.00!
[root@dev1 ~]#

FREE

free: reports on memory and swap usage

buffers: I/O buffers, directory cache

cached: filesystem cache (data)

Example:

[root@dev1 ~]# free!
 total used free shared buffers cached!
Mem: 262316 214228 48088 0 1168 41728!
-/+ buffers/cache: 171332 90984!
Swap: 524280 74564 449716!
[root@dev1 ~]#

W

w: Displays an uptime report, followed by a breakdown of all
logged-in users and what process they are running

JCPU: Combined CPU time of all processes attached to the
terminal (foreground and background)

PCPU: CPU time of foreground process, listed in “what” column

Example:

[root@dev1 ~]# w!
 16:26:42 up 682 days, 10:28, 2 users, load average: 0.02, 0.05, 0.02!
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT!
root pts/0 216-110-93-126.s 16:00 3:57 0.01s 0.01s -bash!
root pts/9 216-110-93-126.s 16:22 0.00s 0.01s 0.00s w!
[root@dev1 ~]#

VMSTAT

vmstat: Snapshot report covering several primary statistics.

procs: number of running and blocked processes

swap: swapped in and swapped out blocks of memory, per second

io: blocks in and blocks out read/written per second

system: interrupts and context switches per second

cpu: user, system, idle, wait and time-stolen from a VM

[root@dev1 ~]# vmstat!
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------!
 r b swpd free buff cache si so bi bo in cs us sy id wa st!
 0 0 74564 3608 4456 70156 0 0 0 2 0 0 0 0 100 0 0!
[root@dev1 ~]#

TOP

top: Self-updating tool displays combination summary at top,
followed by ordered list of processes. Fully customizable.

The summary includes uptime information, memory
breakdowns, CPU utilization and process state summaries

The process display can be customized and sorted to suit need

top - 16:39:32 up 682 days, 10:41, 2 users, load average: 0.01, 0.00, 0.00!
Tasks: 118 total, 1 running, 116 sleeping, 1 stopped, 0 zombie!
Cpu(s): 0.1%us, 0.0%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.1%st!
Mem: 262316k total, 258024k used, 4292k free, 7380k buffers!
Swap: 524280k total, 74564k used, 449716k free, 67808k cached!!
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND !
 1 root 15 0 10316 648 592 S 0 0.2 0:06.24 init !
 2 root RT 0 0 0 0 S 0 0.0 0:04.88 migration/0 !
 3 root 34 19 0 0 0 S 0 0.0 0:00.19 ksoftirqd/0

DF

df: lists filesystem utilization

Breaks down size and use information for each mounted
filesystem

-h is useful option to display in “human-friendly” format

[root@dev1 ~]# df -h!
Filesystem Size Used Avail Use% Mounted on!
/dev/sda1 9.4G 7.2G 1.8G 81% /!
none 129M 0 129M 0% /dev/shm!
[root@dev1 ~]#

ULIMIT

ulimit: Sets resource limits

Can limit open files, memory use, cpu time, subprocesses
and more.

[root@dev1 ~]# ulimit -a!
core file size (blocks, -c) 0!
data seg size (kbytes, -d) unlimited!
max nice (-e) 0!
file size (blocks, -f) unlimited!
pending signals (-i) 2112!
max locked memory (kbytes, -l) 32!
max memory size (kbytes, -m) unlimited!
open files (-n) 1024!
pipe size (512 bytes, -p) 8!
POSIX message queues (bytes, -q) 819200!
max rt priority (-r) 0!
stack size (kbytes, -s) 8192!
cpu time (seconds, -t) unlimited!
max user processes (-u) 2112!
virtual memory (kbytes, -v) unlimited!
file locks (-x) unlimited!
[root@dev1 ~]#

IOSTAT

iostat: IO statistics report

Part of the sysstat package; not always installed

Allows for drilldown into the IO system to view real time
metrics on IO operations per filesystem

[root@dev1 ~]# iostat -x!
Linux 2.6.18-xen (dev1) ! 12/10/09!!
avg-cpu: %user %nice %system %iowait %steal %idle!
 0.05 0.00 0.00 0.03 0.07 99.84!!
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util!
sda1 0.00 1.68 0.01 0.55 0.14 17.83 32.12 0.03 54.01 2.89 0.16!
sda2 0.00 0.00 0.00 0.00 0.01 0.01 35.26 0.00 80.51 4.95 0.00!!
[root@dev1 ~]#

EXERCISES

Spend a few minutes playing with the various troubleshooting
commands covered previously:

top, df, free, iostat, vmstat, uptime, w, ulimit

FILESYSTEM
ADMINISTRATION

mount? umount? mkfs? fsck?

KERNEL VFS LAYER

VFS: Virtual File System

One layer of the kernel is
the VFS Abstraction layer.
This layer defines a basic
interface that all filesystem
drivers at minimum must
implement. http://www.ibm.com/developerworks/linux/library/l-linux-kernel/

http://www.ibm.com/developerworks/linux/library/l-linux-kernel/

VFS

From the user’s perspective, the filesystem is simply a
hierarchy of directories and files.

But in reality, some branches might reside on a networked
file server, some might be on an optical disc, some on
internal drives..

VFS allows the kernel to stitch all of these disparate storage
systems into one cohesive interface!

/ AGAIN

/ is the root of the filesystem, forming the foundation upon
which all access is provided.

When additional filesystems need to be accessible, all that
needs to be decided is the pathname to a directory where
users can see the filesystem.

This is known as the mount point.

The mount point is how the kernel tracks thresholds
between filesystems.

LET’S SEE THIS ON
THE WHITEBOARD

MOUNT

mount: Attach a filesystem to a given mount point

Creates the “detour” sign

Linux supports dozens of different filesystem types,
available by the simple -t option to the mount command:

mount -t smbfs //windoze/share /windoze-share

UMOUNT

umount: detach mounted filesystem

Simply removes the “detour” sign

Mount point becomes a simple directory again

Generally only need to pass mount point as argument:

umount /windoze-share

PARTITIONING

What is partitioning?

Splitting up a hard drive into organizable chunks

Why?

Isolates filesystem corruption

Simplifies/speeds backups

Allows optimizing filesystems to tasks

PARTITIONING TOOLS

fdisk: Works on one disk at a time, allows for viewing and
manipulating partition table at a very low level

parted: Excellent partitioning tool with features to restore
corrupted partitions and more

Gnome Disk Utility: Graphical partitioning tool with
support for logical volumes, encrypted volumes and more

MKFS

mkfs: format a device to create a new filesystem

“Paints the parking stripes” for the filesystem structure

Creates superblock, block groups, superblock copies,
bitmaps and inode tables and creates basic structure on
disk

Through -t option, mkfs can create different types of
filesystems

FILESYSTEM
INTEGRITY CHECKS
fsck: Filesystem Check

Generally only run when a filesystem needs it:

Mount count

Last check

Dirty

Checks all of the filesystem structures for accuracy and
completeness

DEMONSTRATIONS

Now for some demonstrations of the various filesystem
administration tasks and tools

EXERCISES

Un-mount the /lab filesystem.

Rebuild the /lab filesystem (better figure out the right device name!)
using ext3, a blocksize of 1k, and a reserve space of 2%. Confirm
settings with tune2fs. Mount the /lab filesystem when complete.

Un-mount the /lab filesystem and force an integrity check. Re-mount
the /lab filesystem. Use e2label to set the filesystem label on /lab to ‘/
lab’.

CROND, ATD

CROND
Scheduled fun

OVERVIEW

crond is the cron daemon. Cron provides for the ability to
execute commands on a regular basis.

Generally used to run hourly, daily and weekly type system
maintenance scripts.

Also useful to run reports, cleanup jobs and much, much
more.

USING CRON

Cron is controlled through crontab files.

There are system-wide crons, accessible under /etc/cron.*

Every user has their own crontab, accessible through the
crontab command

SYSTEM CRONS

/etc/crontab defines the system cron jobs.

Many distributions use the run-parts script to execute all
scripts found in /etc/cron.hourly, /etc/cron.daily, etc on
the appropriate schedule.

/etc/crontab defines the times for each schedule: hourly,
daily, weekly, monthly

Some systems (RHEL 6) use anacron as well

CRONTAB

crontab: View, edit or remove crontabs

The -l option prints the crontab. The -e option opens
the crontab for editing. The -r option removes the
crontab.

Root can work with the crontab for any user by specifying
the username on the command line:

crontab -e -u bob

CRONTAB SYNTAX

There are two main components to a crontab entry:

The timespec specifies when the command should be run

The command is what gets executed every time the
timespec is matched

CRONTAB TIMESPECS

The timespec is broken down into 5 fields, separated by
spaces:

minute hour day-of-month month day-of-week!

Each field can contain a number, a range of numbers, a
comma-separated list of numbers, an asterisk or a number
slash division rate

Mostly self-explanatory - some examples will help...

TIMESPEC EXAMPLES

0 23 * * * 11pm every day

30 * * * 1-5 30 minutes after every hour, M-F

0 7 1 * * 7am, first of every month

* * * * * Every single minute

0,10,20,30,40,50 * * * * Every 10 minutes

*/5 8-17 * * 1-5 Every 5 minutes, 8am-5pm, M-F

EXAMPLE CRONTAB

There are various additional options and features available
to the cron system. Check the man pages for reference:

cron, crontab (sections 1 and 5)

01 4 * * * /usr/local/bin/restart-webserver!
00 8 1 * * /usr/bin/mail-report boss@mycompany.com!
*/5 * * * * /monitor/bin/check-site -e admin@mycompany.com -o /var/log/check.log

mailto:boss@mycompany.com
mailto:admin@mycompany.com

ATD

ATD OVERVIEW

atd is a simple daemon that executes one-off jobs at a
certain time.

To create an at job:

at <time>!

Then you enter all of the commands you want run at the
given time, and finish by typing ctrl-d

ATD

atd is not commonly used these days, but if it’s there is can
be useful in some situations..

If editing the firewall on a machine over the network, it’s
sometimes nice to put a simple “reset” so if you lock
yourself out, you’ll be able to get back in the machine:

[root@localhost ~]# at now + 10 minutes!
at> iptables-save > /iptables.backup!
at> iptables -F!
at> <EOT>!
job 1 at 2009-11-30 10:44 a root!
[root@localhost ~]#

ATD

Some additional commands to use with the at system:!

atq: Displays list of at jobs

atrm: Removes given at job from queue

SOFTWARE
INSTALLATION

Gotta have it

DELIVERY!

Software is delivered in one of two manners:

Source form - requires compiling

Binary form - generally wrapped up in a package

WHICH IS BEST?

Both formats have their advantages and disadvantages..

Compiling from source can provide higher performing
machine code, plus it gives the option of selecting features
and configurations only available at compile time.

Pre-compiled software is easier - it alleviates the
[possible] headaches of compiling, and if distributed in a
package format, provides built-in management
functionality.

PACKAGES

Installing a software package is pretty straight forward.

There are a few different package formats out there. The two
most popular are:

rpm: Redhat Package Manager

deb: Debian package

In this course, we’ll only be focusing on rpm’s. Deb’s have
similar functionality and capability, so learning the command
syntax is about all that is needed for proficiency.

RPM

RPM’s provide full software packaging features: pre-install
scripts, post-install scripts, dependencies, meta information,
and an installed software database to name a few.

The RPM system maintains a database of all installed
software on a machine - this is useful for tracking and
updating reasons, as well as dependency verification and
software management.

RPM

rpm: The Redhat Package Manager tool. Provides interface
to RPM system, performing queries, installs, upgrades,
uninstalls and general database maintenance operations.

-i option: install the given package

-q option: query the database

-e option: erase the given package from the system

YUM

Not yum as in “This is yummy!”

yum: Yellowdog Updater Modified

Supports package installation over the network through
repositories.

RPM backend

Simple interface

EXERCISES
Browse through the manpage for ‘rpm’. Study the “Query” section.

Use your new knowledge to produce an alphabetized listing of the
names for every installed package on your system.

To what package does ‘/usr/bin/time’ belong?

Browse the manpage for ‘yum’

NETWORK CONFIGURATION
AND SERVICES
route add default gw 192.168.0.1

NETWORK
CONFIGURATION

There are two main approaches to configuring a machine for network
access:

Static configuration

Dynamic configuration

Static configuration uses set parameters for the configuration, which is
known by the machine and the network and never changes. Generally
used with servers.

Dynamic configuration configures network machines on the fly, where a
service on the network provides all configuration parameters to a
machine when it joins the network. Generally used with workstations.

DYNAMIC
CONFIGURATION

Dynamic configuration is the easiest to use.

The machine just needs to set up it’s interfaces with the
DHCP protocol.

DHCP: Dynamic Host Configuration Protocol.

A lease is obtained from the DHCP server, providing all
network configuration details for the client. The lease
expires after some amount of time and is renewed by the
client to maintain network access.

STATIC
CONFIGURATION

Static configuration requires four configuration parameters
in order to allow full network functionality:

IP Address

Netmask

Default Gateway or Router

DNS Server(s)

DNS?

Domain Name Service: This is the glue between network
names and IP addresses.

Remember: Humans like names, computers like numbers.
DNS is a service like so many others, mapping names to
numbers and numbers to names. Mostly a convenience.

Also provides for email functionality, geographic load
balancing and limited service failover capabilities.

STATIC
CONFIGURATION

The first two components of static configuration are IP
address and netmask.

These provide LAN-level access

ifconfig: Original network Interface configuration tool -
being replaced by ip

Basic idea:

ifconfig eth0 192.168.0.100 netmask 255.255.255.0

GATEWAYS

The third configuration parameter is the default gateway.

Provides access to inter-networking, or moving from just
the local LAN to other LAN’s

route: Original kernel routing table tool - being replaced by
ip

Displays and manipulates network routing table

route add default gw 192.168.0.1

DNS SERVERS

Final piece of configuration information.

List of one or more IP addresses which provide the DNS
service, allowing name to IP address mapping

Very simple to configure. Add nameserver lines
to /etc/resolv.conf:

nameserver 192.168.7.15

STATIC
CONFIGURATION

Once all four pieces of information are configured on the
system, full network service will be available.

Best practice:

Configure IP address and netmask. Check LAN
connectivity.

Configure default gateway. Check intra-LAN connectivity.

Configure DNS: Check name resolution.

ONE MORE THING...

ifconfig, route and ip directly manipulate the running
kernel, and are not permanent changes to the system. After
a reboot, changes will be lost.

To make IP address, netmask and gateway changes
permanent, you have to edit two configuration files:

/etc/sysconfig/network-scripts/ifcfg-eth0!

/etc/sysconfig/network

SO...
Demonstrations are Good

EXERCISES

Check your current IP address, default route and DNS servers.

Restart networking services using the proper init script:

! service network restart

NETWORK
TROUBLESHOOTING

ping!

RESPONSIBILITIES

Networking systems together is often a difficult task, further
complicated by large networks and special requirements.

For this reason, networking is it’s own area of expertise

The network engineer is responsible for everything up to and
including the cable and plug connecting to the server

The systems engineer is responsible for everything within
the server, up to and including the network card interfacing
to the cable.

BASICS

Basic network troubleshooting boils down to verifying three
aspects of network performance:

LAN access

Inter-LAN access

DNS service

Notice the parallels to the last lecture? Indeed!

LAN ACCESS

LAN access means being able to at least talk to another
machine on your subnet.

Obtaining at least this level of access indicates that
everything is working fine with the network card, the device
drivers, the cable and initial point of access to the network

This also verifies the IP address and subnet mask

So how to test? First tool of network troubleshooting!

PING

ping: “Packet Internet Groper”

Using IP/ICMP echo requests and echo replies, times the
response time between two machines.

ping 192.168.0.1!

Times reported are Round Trip Times (RTT) and
represent the time between sending a request and
receiving a response.

LAN ACCESS

Using ping, one can verify LAN connectivity by simply
pinging a machine on the LAN.

But what should you ping?

The gateway is a great start! Always on the subnet, and
[should] always be online.

INTER-LAN ACCESS

Checking inter-LAN access verifies the gateway in two ways:

It tests that the gateway itself is working correctly

It also tests that the gateway is correctly configured in the system.

To test, simply ping an IP address in another subnet.

But what to ping?

DNS servers - they’re often times not on the same subnet

Memorize another IP in your network, or a public one: 8.8.8.8

DNS

Checking DNS verifies name to IP mapping

Simple to test: ping a server by name

Pick any server: yahoo.com, google.com, mycompany.com

So long as it’s a name, the DNS system will be tested

MORE TOOLS

Besides ping, there are other network troubleshooting tools
available for more advanced diagnostics:

traceroute: Traces the route a message takes to get
from the source machine to the destination.

netstat: Network statistics - details on open and
recently closed network connections

iptraf: network statistics tool

MORE TOOLS

nmap: Network mapper - useful for seeing what services are
showing on a particular machine

tcpdump: A tool to dump raw network traffic for analysis

wireshark: GUI interface to a tcpdump-like tool

ntop: Top-like command for network connections

ngrep: grep for network connections! :)

EXERCISES

Use ping to check connectivity to rackspace.com.

Traceroute a few sites and review the output.

