
USERS & GROUPS,
BACKUPS

Basic System Administration

USERS AND GROUPS

Users and Groups define access to the operating system through
the file permission scheme.

Root is the super user, and the only user with special permissions

Every user is a member of at least one group, which is called their
primary group. The main purpose of this primary relationship is
to define group owner of created files.

Users can have a secondary group membership in as many
groups as needed. These secondary relationships exist to
broaden a user’s access to the files on the system.

CONFIG FILES

User information is stored in two files:

/etc/passwd!

/etc/shadow!

Group information is stored in one file:

/etc/group

/ETC/PASSWD

List of user records, one per line, with columns separated by
colons. Format:

login:x:userid:groupid:gecos:homedir:shell!

Examples:

root:x:0:0:root:/root:/bin/bash!

mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash

/ETC/SHADOW

Similar colon-separated-column list of records:

login:password:password aging fields

Aging fields track dates for password resets, locks, etc

Examples:

root:pB8msP1fCbCqc:13904:0:99999:7:::

nisburgh:vRoPw6a/jQsp.:14466:0:99999:7:::

/ETC/GROUP

Same colon-separated-column list of records format

groupname:grouppassword:groupid:secondarymembers!

Group passwords allow temporary access to a group, are
rarely used and not set up by default

Examples:

daemon:x:2:root,bin,daemon!

apache:x:48:jack,nisburgh

MANAGEMENT

While it is possible to edit the three files directly, it’s easier
and safer to use the management commands to create,
modify and delete users and groups:

useradd, usermod, userdel!

groupadd, groupmod, groupdel

USERADD

useradd: Add a new user to the system

Accepts various arguments to control the settings on the
user account. Most common is the -g option to specify the
primary group of the user, and the -G option to list
secondary group memberships. Examples:

useradd lisa!

useradd -g clowns -G trouble,simpson bart

USERMOD, USERDEL

usermod: Modify a user’s settings. Example:

usermod -G detention bart!

userdel: Remove a user from the system. Main option to
consider is -r, which tells userdel to remove the user’s
home and spool directories. Example:

userdel moe

GROUP COMMANDS

groupadd: Adds a new group to the system. Example:

groupadd bullies!

groupmod: Mainly used to rename a group. Example:

groupmod -n mktg mkg!

groupdel: Remove a group. Example:

groupdel microsoft

PASSWORDS

passwd: Change login password.

Root can change the password for any user on the system

Root can also setup password aging, allowing for timed
password resets and account disabling

passwd is also the preferred way to lock a user account:

passwd -l mary

PASSWORD AGING

To set the maximum lifetime for a user’s password:

passwd -x days login!

When a user’s password has expired, you can set the number
of days it can remain expired before disabling the account
completely:

passwd -i days login

SIDE NOTE: SU AND
SUDO

Best practice states that a user should always log in as a
regular user, then switch to the root user when necessary for
a system administration task. There are two tools available
to do this:

su: switch user. As a regular user, this allows you to
switch to the root account if you know the root password.

sudo: “su do”. Perform an action as root or another user.
If configured for access, you only need your password.
Use visudo to edit configuration.

EXERCISES
Create a new group ‘dev’. Create a new user ‘alice’ as a member of the
‘dev’ group, with a description of “Alice from Dev” and a default shell of
‘/bin/csh’. Use the passwd command to set a password for alice, then
log in as alice and verify her access.

Lock alice’s account and verify she can’t log in anymore. Unlock her
account and verify access once more. Add alice as a secondary member
of the ‘gdm’ group.

Set a maximum password lifetime of 4 weeks for the alice account.
Look at the passwd, shadow and group files.

BACKUPS

Why backup?

Hardware failures

Software failures

[Epic] User failures

Disasters

WHAT TO BACKUP?

At minimum, all user data and intellectual property

At maximum, entire systems, OS and all

In reality, many factors drive what gets backed up:

budget

time

resources

need

WHERE TO BACKUP?

Good question - many, many places

Local online copies

Remote online copies

Offline copies - Disk, Tape

HOW TO BACKUP?

Small scenario:

rsync, tar, burning software, tape drive

Large scenario:

rsync, tar, enterprise backup software, tape libraries

FLATTENING
HIERARCHIES

How to backup a directory? The directory represents an
entire tree of files and directories? How can you put all of
the information necessary to recreate the tree into one file?

tar!

Originally the Tape Archive tool. Used to backup directory
trees to tape. Nowadays more commonly used to “flatten” a
tree into one file.

CREATING A TAR
ARCHIVE

To create a tar archive:

tar cf <tarfile.tar> <file> [file]...!

The c option tells tar to create an archive. The f option is
critical - it tells tar to put the archive in a file on disk, rather
than on a tape device.

You can add the v option (tar cvf) to get verbose output.
Tar will report every file added to the archive.

VIEWING AN ARCHIVE

To view an archive (a table of contents):

tar tf tarfile.tar!

The t option asks tar to print a table of contents of the
archive. If you add the verbose flag (tvf), tar will report
detailed information on each file, similar to the long output
of the ls command.

EXTRACTING AN
ARCHIVE

This is the tricky part of tar, and getting it right requires an
understanding of how tar stores file in the archive.

When an archive is created, the pathnames are stored into
the archive. When you view the table of contents, you’re
viewing the relative pathnames as they would be created on
extraction.

This can sometimes confuse the user, and is best illustrated
with an example...

EXTRACTING AN
ARCHIVE

If tar tf file.tar reports:

memo.txt!

report/!

report/data!

Then when the archive is extracted, the resulting files will be:

CWD/memo.txt!

CWD/report/!

CWD/report/data!

Where CWD represents the current working directory

EXTRACTING AN
ARCHIVE

To extract an archive:

tar xf tarfile.tar!

tarfile.tar will be extracted to the current working
directory, so be careful! Make sure you understand the
contents of the tar file to be sure you don’t accidentally
overwrite existing files.

TAR EXAMPLES
Help remove the mud

EXERCISES
From your home directory, create a tar backup of the test folder.
Name the tar file ‘test.tar’. Verify it is correct by viewing the table of
contents.

Create a new directory in your home folder called ‘temp’. Change into
this directory and extract your test.tar backup file. Can you see the
‘test’ folder and it’s contents?

Browse through the man page for ‘diff’. Use ‘diff -r’ to compare the
original ‘test’ folder with the newly extracted ‘test’ folder. Are there
any differences?

COMPRESSION

Tar files can get quite large, and storing/sharing them
uncompressed wastes a large amount of storage space and
bandwidth.

Enter: compression.

Compression uses complex algorithms to rewrite the
contents of a file in a way that takes up less space, but can be
reversed back to the original contents

COMPRESS

One of the original compression algorithms: the Adaptive
Lempel-Ziv. Not used very much any more, especially in
Linux environment

Achieves 40-50% compression on average

Extension: .Z!

Compress: compress

Decompress: decompress

GZIP

Updated algorithm: Limpel-Ziv 77 (LZ77)

Achieves 60-70% compression on average

Extension: .gz!

Compress: gzip

Decompress: gunzip

BZIP2

Powerful algorithm: Burrows-Wheeler Block Sorting
Huffman Coding

Achieves 50-75% compression on average

Extension: .bz2!

Compress: bzip2

Decompress: bunzip2

TAR + COMPRESSION

Once a tarball has been created, it’s generally compressed
with gzip or bzip2:

gzip -9 tarfile.tar!

bzip2 -9 tarfile.tar!

The -9 option tells the compression tool to maximize
compression efficiency (taking longer). 1-9 are acceptable
values, with -1 indicating minimal efficiency and maximum
speed.

ZIP FILES

Zip files, originally put forward in the DOS/Windows world
via the pkzip tools, and now winzip, are actually a
combination of hierarchy archiving and compression.

Basically, zip files include the features of tar and
compression in one format! Advantages and disadvantages,
of course.

There are open source tools which allow access to creating,
viewing and extracting zip files in the Linux environment.

ZIP

Lots of algorithms implemented

Varying compression ratio depending on algorithms used

Extension: .zip!

Compress: zip

Decompress: unzip

ZIP

Remember, zip files are not just compressed files. The zip
archive actually contains files and directories within it, so
the interface is closer to tar than gzip or bzip2.

Generally, zip files are only encountered in the Linux world
when interacting with the Windows world. Within Linux,
everything is a compressed tarball.

EXERCISES

Make several copies of test.tar and use gzip to compress them. Try
once with compression level 9 and once with compression level 2.
Check the sizes of each.

Use bzip2 to compress one of the copies. Compare it’s size with the
gzip sizes.

