
PROCESSES
At least they’re not ISO-9001 processes

STRUCTURE

In Linux, a Process wraps up everything that is needed to
know about a running piece of software

The meta information not only includes the machine code
for the software, but also things like what user/group pair is
running the process, when it was started, what the command
line was, etc.

In fact, here’s a short list of the pertinent parts of a process:

STRUCTURE

PID

PPID

UID/GID

Command

Start Time

CPU Time

CWD

State

TTY

Environment

Priority

Nice Level

PID

Process ID

Linux uses this number to uniquely identify every process on
the computer

Number from 1-32768 (default - can change the maximum)

Assigns new PIDs incrementally by 1, 2 or 4

Loops back to 1 after hitting the maximum

PPID

Parent Process ID

PID of the process that started this one

UID/GID

The User and Group running the process

Very important! Defines access and permissions to file
system and operating system.

Inherited from Parent process unless:

SetUID/SetGID bits on executable

Completes the Circle of Security

COMMAND

The command (and arguments) for the process

Identifies the executable running, as well as the arguments
passed at invocation

START & CPU TIME

Start Time tracks when the process was started

CPU Time tracks time the process actually spends running
on the CPU

CWD

Current Working Directory

‘nuf said

Inherited from parent process

STATE

State of the process:

Runnable

Stopped

Blocked - Interruptible

Blocked - Non-interruptible

Zombie

TTY

Connected terminal

Mostly informational

Inherited from parent process

ENVIRONMENT

Every process has it’s own Environment

Inherited from parent process

PRIORITY

The priority is a read-only value showing the current priority
assigned by the scheduler

Ranges from 0-99, with higher values representing higher
priorities

The scheduler constantly adjusts priorities to balance
efficiency, performance and responsiveness

NICE LEVEL

The nice level represents one influence on the calculations the
kernel uses when assigning priorities

Originally designed and named to allow users to be “nice” to
other users of the system by assigning a higher nice value to
an intensive process, which in turn lowers it’s priority

Ranges from -20 to 19. Default nice level is 0

Only root can assign negative nice values

See nice and renice commands

LISTING PROCESSES

ps: List of current processes

pstree: Generate hierarchical view of processes

Examples:

ps View all processes started by logged in user

ps aux View details of all processes on system

pstree View tree of all processes on system

PROCESS STATES

There are 5 basic process states:

Runnable

Stopped

Blocked/Sleeping - interrutible

Blocked/Sleeping - non-interrutible

Zombie/Defunct

RUNNABLE

This means the process is running, or is set to run

Remember: Linux is a multi-tasking operating system, so it’s
hard to see exactly when processes are running (switched so
quickly), so the state is runnable, indicating that the
scheduler will provide CPU time when it’s available

STOPPED

Opposite of Runnable - the process will not get CPU time

Nothing happens to the process - it’s still in memory, poised,
ready to go. But when it’s put in the stopped state, the
scheduler will not put it on the CPU

Files/network connections remain open, but network
connections may drop after a time (timeout)

INTERRUPTIBLE SLEEP

The process is waiting for some event - perhaps an alarm
from a sleep system call, perhaps a signal or other external
event

Interruptible means that other processes/events can break
the sleep

NON-INTERRUPTIBLE
SLEEP

This sleep state is generally caused by IO operations -
accessing a drive, communicating with the network, etc.

Non-interruptible means that other processes/events can
not break this sleep.

This process is unable to respond to signals.

ZOMBIE/DEFUNCT

Braaaaaaiiiiiiinnnnnssss.. Wait, no, not that kind of zombie.

An exited process whose parent did not wait() on the child

Does not consume resources beyond a PID and meta
information storage (< 1k generally)

Generally caused by two situations:

Bug in software

Overly taxed machine

SIGNALS

First form of Interprocess Communication (IPC)

A signal is a message sent to a process to indicate events or
other conditions. The signal itself is the message - there
around three dozen defined signals...

COMMON SIGNALS

HUP - Hangup

INT - Interrupt

QUIT - Quit

ILL - Illegal Instruction

ABRT - Abort

KILL - Kill

SEGV - Segmentation Fault

ALRM - Alarm

TERM - Terminate

STOP - Stop

CONT - Continue

FPE - Floating Point
Exception

SENDING SIGNALS

kill: Send a signal to a process. Default signal: TERM

Examples:

kill 457!

kill -9 2359!

kill -CONT 1350

