FILESYSTEMS

Mmmm crunchy

PURPOSE

e So all this data...
e How to organize? Whose job?

e Filesystems!

PERMISSIONS

e Linux supports 3 main types of access on a file:
e read: View the contents
o write: Modify the contents and metadata
o execute: “Run” the contents

o Actually, it’s slightly more complex because it’s different for
files and directories...

PERMISSIONS

Directories

Read View the contents List contents

Change the contents/ Create/delete entries,

Write metadata change metadata

Operate with

Execute Run” the contents directory as CWD

AWESOME... SO?

e Combining these permissions allows for the most common
access levels:

e Read only
o Read/Write
® Lixecute

o clc

o Now to add a little more granularity, users and groups...

OWNLERSHIP

o All files are associated with one user and one group. This
creates the foundation for the main meat of the security
infrastructure in the Linux (and Unix) operating system.

e When a process attempts an operation on a file, the user and
group of the process (because every process is associated
with one user and one group! surprise!) are compared with
the user and group of the file, which determines what level
of permissions is granted or denied on the file...

PUTTING IT ALL
TOGETHER...

o Every file has 3 levels of permissions:
o User
e Group

e Other

e When a process seeks access, the process user is compared
to the file user - if they match, the process gets the User
permissions. Next Group. If no match, Other level access

THE TRIPLE OF
TRIPLES

o All of the permission information is neatly summarized with
9 characters:

g e e e
G > 2 o
y .4 & \

) - Y 4
2 . Y N 4
‘4‘?‘.:‘ \ > 4 R »."' .;;;_:‘ . P

SR SRR R

e The presence of the letter indicates the permission is
granted, a hyphen in it’s place indicates the permission is
denied. Read only: r--r—--r--

CHANGING
OWNERSHIP

e Two commands are available for changing the ownership of
a file:

e chown: Change Owner - changes the user owner of a file
e chown bob memo.txt
o chgrp: Change Group - changes group owner of file

e chgrp mgmt memo.txt

CHOWN IT UP

e chown can actually change the group owner as well, so you
don’t need to bother messing with chgrp

e chown :mgmt memo.txt
® You can do both at once, in fact!

o chown bob:mgmt memo.txt

CHANGING
PERMISSIONS

e Changing permissions is slightly more involved. The
command is chmod (change mode)

e There are two basic ways to represent the permissions:
e human friendly

e octal

HUMAN FRIENDLY
CHMOD

e When using human friendly permission specification, you
just need to specity what level permission you want to
change, how you want to change it, and what the
permissions are..

o A table will clear up the mud...

HUMAN FRIENDLY
CHMOD

Symbols

read, write,
execute, set id,
sticky

user, group, add, subtract,

Explanation i oo

Sl

o Examples:
e chmod u+x file
e chmod go-r file
e chmod u=rw,go= file

e Yes, you can combine “equations” to make different changes
by separating them with commas, as in the last example

o QOctal refer to a base for a numbering system. Namely, base
8. Humans think and count in base 10, decimal. Computers
work in base 2 (binary) and sometimes base 16
(hexadecimal). Octal is just another one, useful for
PErmissions

e Short of a long, grueling discussion of numbering systems,
you're going to have to just do some memorization here...

OCTAL!

Permissions

e Each octal digit fully represents all three primary
permissions, so to specify all the basic permission levels for
a file, all you need are 3 octal digits (user, group, other)!

e chmod 777 file

e chmod 755 file

e chmod 644 file

e chmod 000 file

EXERCISES

o Add write permissions for everyone to ‘file1’. Change the owner to
‘user’ and the group to ‘user’. (It won’t change, but if you did it right
you won't get an error message)

e Explain the following permissions: rw-r-----

o Explain the permissions represented by 644

e Linux filesystems support two types of links, hard and soft

e Soft links are the easiest to understand, and have cousins in
most operating systems, which makes them familiar

e Hard links are best explored later in your Linux career

SOFT LINKS

e A soft (or symbolic) link is like a shortcut in windows: it’s a
file that simply “points” to another file.

e In Linux, the pathname “pointed to” (source) is stored in
the data blocks of the soft link (target)

e A soft link is an actual file, consuming an inode and using
data blocks to store whatever pathname it’s pointing to

SOFT LINKS

e To create a soft link, use the 1n command with the -s option:
e ln -s memo.txt link-to-memo.txt

e In this example, memo. txt is the source and 1ink-to-

memo . txt is the target

e This command creates a new file, 1ink-to-memo. txt,
of type link, which points to memo . txt

SOFT LINK TRIVIA

e Since soft links merely store a pathname (absolute or
relative), they can link to anything, anywhere. Local
filesystem, other filesystems, network filesystems,
removable media filesystems. They can even point to invalid
pathnames! The kernel cares not!

e Removing a soft link does not remove the file pointed to,
only the link file.

e Soft links do not have permissions themselves (no need!)

EDITING FILES

e Time for a Nerd Holy War

o Editor of choice, anyone? (TUI only - if anyone throws down
with a GUI editor, you've failed the class already!)

e In my opinion, vi (or vim) wins =)

e emacs Is great, powerful and fast, but it’s just not common
enough. Plus, the control-x madness is, well, madness! ;)

e For now, you can use nano, but learning vi will be critical if
you intend to further your Linux pursuits

EXERCISES

e In your home directory, create a soft link to ‘file1’. Verify the link by
cat-ing the contents out. Compare the inode numbers.

e Use nano to edit file1 with some of your observations about Linux so
far

