
INTRODUCTION TO
DNS

or, how computers handle our predilection for names over IP
addresses

TECH SPECS

Instructor:

Nathan Isburgh

instructor@edgecloud.com

4 hours, lecture/lab format

Two 10 minute breaks

WHAT?

DNS - Domain Name System - A system of servers and clients
which map host names to IP addresses and vice versa.

IP Address - Identification information for nodes on a
network - “dotted quad”

Host name - human-friendly name for identification of nodes
on a network

Example:

www.rackspace.com -> 72.32.191.88

SO HOW DOES THIS
WORK?

Queries!

A client of the DNS service puts together a query to send to a
name server. This query formats the request in a consistent
manner so the DNS server can process and answer with a
response.

What’s a query? A simple query might be requesting the IP
address associated with a domain name, as in the previous
example. Other queries might ask for the mail exchangers of
a domain, to deliver an email message.

DNS CLIENTS

Really aren’t all that interesting. Basically...

A user wants to go to google.com, so the web browser asks for
the IP address of google.com via the resolver library. The
resolver library takes the request, forms a datagram message
and shoots it out to the configured nameserver for the machine.
The nameserver works all the magic and sends back the answer,
which is then parsed by the resolver library and handed back to
the application.

Even still, DNS is quite elegant in it’s solution to the naming
problem

QUICK HISTORY

In the late 60’s, ARPAnet was formed by [D]ARPA. This
infantile network interconnected a few dozen computer sites
around the country, and naming was not a problem because the
network was mostly static.

Then in the 70’s, ARPAnet grew to a few hundred hosts, and
naming had to be centralized. The Stanford Research Institute
(SRI) hosted a file called HOSTS.TXT, which was a flat text
database of all machines connected on the ARPAnet.

Administrators periodically downloaded the HOSTS.TXT file to
update their local host to address mappings.

MORE QUICK HISTORY

Changes to hostnames and addresses were emailed to the
SRI Network Information Center (NIC).

This setup was tolerable while ARPAnet was still a small,
friendly community of nerds.

Then TCP/IP came along in the early 80’s, and the ARPAnet
population exploded.

All of a sudden, HOSTS.TXT maintained by one group at
SRI-NIC was untenable.

DNS TO THE RESCUE!

Paul Mockapetris was charged with designing a replacement
for the rapidly failing HOSTS.TXT hack.

In 1984, Paul released two Requests For Comments (RFC)
detailing the design of the Domain Name System. Later
updated by RFC’s 1034 and 1035, as well as many other
RFC’s covering security and other enhanced features of
DNS.

DNS FUNDAMENTALS

DNS has a very strong hierarchal structure to it, similar to a
filesystem - an inverted tree.

At the top is the trunk of the tree, known as the root node,
written as a single dot: .

Directly beneath the root node are the Top Level Domains
(TLDs). The TLDs provide the top-most level of organization
of the name space. Think of them as groups or buckets which
all domain names fall in to. Some of the TLDs:

com, net, org, edu, biz, us, uk, info, travel, museum

PICTURE TIME!

.
This is the
root node!

edu net com biz infouk
And

these are
TLDs!

Now imagine the traditional Unix filesystem.. Put / in for
the root node, and usr, bin, etc, var, lib, mnt for the TLDs.

See the similarity?

SECOND LEVEL
DOMAINS

After the TLD comes the second level domain, only
important because this is generally what is “owned” when
someone registers a domain name. The combination of the
second level domain with the top level domain. Examples:

yahoo.com

google.com

rackspace.com

MORE PICTURES!

.
This is the
root node!

edu net com biz infouk
And

these are
TLDs!

rackspacegoogleyahoo SLDs!

DNS

The similarities between the Domain Name System and a
Unix filesystem are numerous:

Siblings can not have the same name

Inverted tree, ‘trunk’ is root

Each node in the tree is a root for a subtree within the
overall tree. This is known as a directory in filesystems,
and a domain (or subdomain depending on preference)
in DNS.

DNS

Just like a pathname identifies a location in the filesystem, a
domain name identifies a location within the DNS database.

In a filesystem, the pathname is specified starting from the root
node, separating each directory with a ‘/’, as: /usr/local/bin

In DNS, the domain is specified in reverse, from the lowest
level, back to the root, separating each domain with a ‘.’, as:
web1.rackspace.com.

The final ‘.’ on a domain name is not required*, and if it is not
present, is generally assumed to be the root node.

WHY?

Prevents name collisions! Every node is guaranteed unique!

Delegation of authority!

The concepts of sub trees and domains allows for simple
demarcation of authorities.

This is an absolutely critical aspect for the design of DNS.
No longer is there one centralized authority for all naming
needs (like the old SRI-NIC model).

DELEGATION

Now, the DNS administrators can delegate authority for a
particular domain to a separate entity.

For example, the rackspace domain was delegated by the com
domain to Rackspace. Now Rackspace manages the entire
namespace at and below rackspace.com.

This is great for everyone - the DNS admins no longer have to
handle change requests for rackspace.com. Further, since the
domain was delegated, they don’t have to hold the domain
database for that branch of the tree. Requests will be passed
along to the Rackspace nameservers!

DELEGATION

Rackspace has complete control over the rackspace.com
domain.

A host on rackspace.com, called ‘www’, provides a website.

Perhaps the departments are split up, so you have names like:

cloud.rackspace.com

managed.rackspace.com

apps.rackspace.com

DELEGATION

Organization is great. Delegation is better. If
cloud.rackspace.com starts getting too big for rackspace to
handle themselves (as a company-wide IT entity), cloud
could be delegated and then the Cloud department would be
in charge of their own little subdomain.

Then if Cloud needed to add a new node, wiki, they could do
it themselves: wiki.cloud.rackspace.com.

The authoritative information for wiki would be found on
the Cloud nameservers, not the Rackspace nameservers.

AUTHORITY

“Respect my authori-tie!”

Authority decides who is responsible for a given domain.

When a nameserver responds to a request, it can provide
authoritative or non-authoritative information

Authoritative information means that the nameserver is directly
responsible for that information.

Non-Authoritative information is what a nameserver passes on
from some other name server. Which brings us back to queries..

DNS QUERIES IN
DEPTH

So what really happens when a user requests
www.rackspace.com in their web browser?

Let’s diagram this out on the board..

ROOT NAMESERVERS

The root nameservers are the starting point for the domain
name system. Root, see? Get it? Bah.

The root nameservers know where all of the top level domain
name servers are located. And in some cases, certain root
nameservers are authoritative for a TLD.

As you can see, the root nameservers are the most important
parts of the domain name system. There are currently 13 root
name servers spread around the globe, on varying networks and
some operating in multiple geographic locations through
anycast routing.

(NON)RECURSIVE
QUERIES

A recursive query asks a nameserver for the final answer to a
question, and relies on the name server to perform the
necessary additional queries to provide that information.

A non-recursive or iterative query simply asks a nameserver
to provide the best information it has on the query.

In the example earlier, the initial request from libresolv to
the nameserver was recursive. All other requests were
iterative. This is the standard method of operation.

SO, THAT SEEMS
INEFFICIENT...

You’re right, if that’s all there was, DNS would be terribly
slow, inefficient, and a ridiculous strain on the root
nameservers.

Fortunately, that problem was considered all the way back at
the design phase, and so caching is used everywhere.

Caching is the technique of storing a local copy of some piece
of information in order to have faster access to it. There are
many ways to keep the cache copy “up to date” with the real
copy, and in DNS that is achieved by the Time To Live (TTL).

CACHING AND TTL

When a nameserver receives a response to a query, it caches that
response in order to improve performance on future queries that
might need that information.

Consider, in the previous example, if someone had earlier
requested yahoo.com. Then when a request for
www.rackspace.com is made, the nameserver would have already
cached the nameserver information for the com domain, and would
not need to query the root nameservers.

The cached information is held for the Time To Live - maybe 5
hours, maybe 3 seconds - the TTL is decided by the authoritative
server.

TTL

As with everything, setting the TTL is a balancing decision.

A shorter TTL provides for a more rapid propagation of DNS
changes. But, it also increases load on your nameservers,
since the cache expires quickly and will have to be refreshed
by other nameservers more often.

A longer TTL is the inverse - lower load on your nameserver,
but longer propagation times.

DONE!

Well, actually, we’re just getting started. But that’s the Big
Picture for DNS host to address resolution.

What about the reverse? Address to host resolution?

REVERSE MAPPING

Given an IP address, how to find the domain name? Search
the entire database one at a time? Heck no, not possible.

in-addr.arpa!

This is a special domain used to provide the reverse
mapping.

Each octet in the dotted quad of an IP address is at a level in
the domain tree for in-addr.arpa.

IN-ADDR.ARPA

From in-addr.arpa, the next level can be one of 256
domains, representing the first octet of the IP address.

The next level down is the second octet, and so forth. So:

192.168.1.100

100.1.168.192.in-addr.arpa

Why is it backwards?

IN-ADDR.ARPA

Simple! IP address space is dolled out in blocks, with the address
for the block representing the first portion of the IP address, and
the address for the specific host in that block comprising the
remaining part of the IP address.

If the in-addr.arpa domain wishes to delegate domain authority to
the corresponding users of the IP blocks, the first level below the
in-addr.arpa domain must be the first octet of the IP address, since
IP address space is delegated from left to right. Think of the
inverse tree and domains.

The other way would “work” as far as DNS is concerned, but
delegation of the in-addr.arpa space would be impossible.

YAY THEORY

Had enough theory?

Good. Let’s see some tools to play with name servers!

NSLOOKUP & DIG

BIND
Berkeley Internet Name Domain

ZONES AND DOMAINS

The distinction is small, but important to make clear:

A domain represents all of the various branches of a particular
subtree in the DNS database, regardless of delegation. For
example, the rackspace.com domain would encompass
everything, cloud.rackspace.com, www.rackspace.com and
apps.rackspace.com.

A zone represents all of the information a nameserver might be
authoritative for - which includes other domains. So the
rackspace.com zone would include www.rackspace.com, but not
cloud.rackspace.com or apps.rackspace.com, since those are
delegated and represent their own zones.

CONFIG FILES

BIND basically has two types of configuration files:

BIND configuration file, specific to BIND and it’s features

Database files, or zone files, which contain DNS resource
records used to describe all of the DNS information
needed in a domain

Next, a discussion of resource records and the six most
common ones: SOA, NS, A, CNAME, PTR, MX

RESOURCE RECORDS

A resource record contains the DNS information about a
domain.

There are several types of resource records, including
address records (A), mail exchangers (MX) and name
servers (NS).

Every domain has at least 2 resource records, an SOA and an
NS. But that wouldn’t be a very useful domain, so there are
usually quite a few more records, defining addresses, mail
exchangers, canonical names and more.

SOA

Start Of Authority: This resource record defines authority
for a zone.

domain IN SOA nameserver adminemail (
serial
refresh
retry
expire
negativettl

)

We’ll discuss these later!

SOA EXAMPLE

rackspace.com. IN SOA ns1.rackspace.com. dnsadmin.rackspace.com. (
2009123004 ; Serial number
3h ; Refresh interval
1h ; Retry interval
1w ; Expires
1h ; Negative TTL

)

NS

Name Server: Defines authoritative nameservers for the
zone.

zone IN NS nameserver

Example:

rackspace.com. IN NS ns1.rackspace.com.

A

Address: Maps hostnames to IP addresses

hostname IN A ipaddress

Example:

ns1.rackspace.com. IN A 192.168.1.5

CNAME

Canonical Name: Maps alias hostnames to their canonical
counterparts.

aliashostname IN CNAME canonicalhostname

Example:

ns.rackspace.com. IN CNAME ns1.rackspace.com.

CANONICAL?

In layman terms, canonical is another way of saying “real”,
“absolute” or “official”.

So a canonical name refers to the “official” name for a host.

Creating an alias for a host means that you have to decide on
the canonical name, which would be some A record.

When a resolver performs an A query on a CNAME, the
nameserver looks up the canonical name to find out the
address to return.

WHY NOT JUST USE A?

There are basically two reasons to use CNAME records
instead of just lots of A records.

First, ease of maintenance. If you need 10 names for one
machine, defining them with CNAME is easiest if you
then need to change the IP address of the machine. Only
one change instead of 11.

Second, canonicalization. Some services, most notably
sendmail, will convert all aliases into their canonical
names. This simplifies mail configuration.

PTR

Pointer: Maps an IP address back to a name, specifically the
canonical name.

ipaddressdomain IN PTR canonicalhostname

Example:

5.1.168.192.in-addr.arpa. IN PTR ns1.rackspace.com.

PTR

Remember, there is only one PTR record for a given IP
address, and it should always point to the canonical
hostname.

Also, as a side note, make sure your mail servers map both
directions exactly. This is important for proper
authentication:

mailer.mydomain.com. -> 192.168.1.50

50.1.168.192.in-addr.arpa. -> mailer.mydomain.com

MX

Mail Exchanger: Defines hosts responsible for incoming
email for the named zones.

zone IN MX preference mailhandler

Example:

rackspace.com. IN MX 10 mail1.rackspace.com.

MX RECORDS

MX records allow for enhanced mail routing functionality.

When an email is shipped out, the server canonicalizes the
delivery address. So, for example, bob@ns.rackspace.com
becomes bob@ns1.rackspace.com.

Then the server looks up the MX records for
ns1.rackspace.com, choosing the record with the lowest
preference and attempting delivery there. If delivery fails, the
next lowest is attempted.

This allows for backup email servers!

BACKUP EMAIL
SERVERS

But, how does the backup server handle forwarding on the
message to the primary?

Preference values to the rescue again!

The backup server will compare it’s own MX preference
value with the list, and discard all records at or below it’s
own level, thereby eliminating the chance for mail delivery
loops (assuming everything is set up correctly)

Quite elegant, no?

PUTTING IT ALL
TOGETHER

$TTL 1h
rackspace.com. IN SOA ns1.rackspace.com. dnsadmin.rackspace.com. (

2009123004 ; Serial number
3h ; Refresh interval
1h ; Retry interval
1w ; Expires
1h ; Negative TTL

)

rackspace.com. IN NS ns1.rackspace.com.
ns1.rackspace.com. IN A 192.168.1.5
mail1.rackspace.com. IN A 192.168.1.20
ns.rackspace.com. IN CNAME ns1.rackspace.com.
rackspace.com. IN MX 10 mail1.rackspace.com.

db.rackspace.com:

TOGETHER...

$TTL 1h
1.168.192.in-addr.arpa. IN SOA ns1.rackspace.com. dnsadmin.rackspace.com. (

2009123004 ; Serial number
3h ; Refresh interval
1h ; Retry interval

1w ; Expires
1h ; Negative TTL

)

1.168.192.in-addr.arpa. IN NS ns1.rackspace.com.
5.1.168.192.in-addr.arpa. IN PTR ns1.rackspace.com.
20.1.168.192.in-addr.arpa. IN PTR mail1.rackspace.com.

db.192.168.1:

SO WHAT ELSE?

In addition to the zone files for your domains, you need a
couple more zone files to get BIND up and running.

Loopback address

Root hints

LOOPBACK ADDRESS?

Someone has to take responsibility for loopback address
requests! It’s simple enough. db.127.0.0:

$TTL 1w
0.0.127.in-addr.arpa. IN SOA ns1.rackspace.com. dnsadmin.rackspace.com. (
 2009123004 ; Serial number
 3h ; Refresh interval
 1h ; Retry interval

 1w ; Expires
 1h ; Negative TTL
)

0.0.127.in-addr.arpa. IN NS ns1.rackspace.com.
1.0.0.127.in-addr.arpa. IN PTR localhost.

ROOT HINTS!

The root hints tell the nameserver where those DNS Root
Servers are located, so that requests for hosts outside of your
authoritative zones can be resolved.

This one is the simplest to put together. You don’t even have
to write it!

Simply ftp the db.cache file from ftp.rs.internic.net/domain

Let’s take a look at that file real quick..

WHEW

Finally. All of the zone files are put together and ready.
Final step? Configuring BIND.

The config file is generally /etc/named.conf (though for
the security-paranoid, /var/named/chroot/etc/
named.conf might be the place...)

We’ll view this one on the live system in a few minutes...

SHORTCUTS

There are a few handy shortcuts you can use in zone files:

$ORIGIN - automatically set to the zone name specified
in the bind config file. Can be changed if desired.
Automatically appended to any unqualified name in the
zone file:

ns1.rackspace.com. IN A 192.168.1.5

ns1 IN A 192.168.1.5

SHORTCUTS

@ Notation: @ is replaced with $ORIGIN. Generally used in
SOA:

@ IN SOA ns1.rackspace.com. dnsadmin.rackspace.com.
(...)

Repeating: When RR name is the same as the previous, it
can be left out:

mail1.rackspace.com. IN A 192.168.1.50

 IN A 192.168.1.51

LIVE CONFIG

Let’s take a look at the live config now, to see the shortcuts
in use and complete the circle, if you will, on all of the
configuration moving parts.

Logs, too! Long live live logs letting learners learn log life!

SLAVING

DNS Slave servers are a critical component to the healthy
functioning of DNS.

Slave servers exist to help shoulder the load of requests, and
also provide backup resolution services if other servers go
down.

Slave servers are still *authoritative* for zones, the slave
part just means that they pull their data from a master
server via a zone transfer rather than a local file.

SETTING UP A SLAVE
SERVER

Setting up a slave server is actually quite simple.

In the named.conf file, there are some slight changes.

Each zone (besides 127.0.0/24 and root zones) section will
contain:

type slave;

masters { 192.168.1.5; };

file “bak.zonename”

SOA FIELDS

Now we can talk about those fields in the SOA record!

domain IN SOA nameserver adminemail (
 serial
 refresh
 retry
 expire
 negativettl
)

SLAVING IN ACTION

We’ll take a look, now, at a slave nameserver for our
theoretical DNS environment.

CHANGES

Changing the information in a zone is a simple process.

On the master, edit the appropriate zone file.

First, increment the serial number, so slaves will pick up
the changes.

Second, make your changes.

Third, reload the nameserver (rndc reload)

The slaves will pick up the changes automatically

SUBDOMAINS

Creating a subdomain is simple enough.

The proper zone file is created for the subdomain

The parent domain lists NS and A records for the
authoritative nameservers of the new subdomain.

DNS SECURITY

Some key aspects of securing your nameserver

Keep BIND up to date!

Run BIND in a chroot-ed environment!

Use the allow-transfer option to control what IP addresses
can perform zone transfers - make sure it’s only your slave
servers!

Consider implementing TSIG or DNSSEC

FIN
Questions?

