
DAY 2!
Logs, Aliases, Redirects, Rewrites, and More! Oh My!

Thursday, November 8, 12

VIRTUAL
HOSTING

Thursday, November 8, 12

OVERVIEW

Virtual Hosting is an extremely popular feature of the
Apache webserver.

Virtual Hosting allows Apache to serve up more than one
website, based on:

Destination IP address (IP-based virtual hosting)

Destination Port (Port-based virtual hosting)

Destination Name (Name-based virtual hosting)

Thursday, November 8, 12

VIRTUALHOST

The <VirtualHost> directive defines a new Virtual Host in
the Apache configuration.

The directive takes one argument, which defines how
Apache will identify requests for the virtual host.

Valid values include:

IP address, Hostname, *, _default_

Thursday, November 8, 12

NAMEVIRTUALHOST

Named-based virtual hosting requires special discussion.

In a normal scenario, Apache identifies and routes requests
to the filesystem based off of standard TCP information,
such as IP address and port.

By definition, name based hosting means Apache has to
identify requests with a name instead of an IP address. The
NameVirtualHost directive tells Apache which IP
address/port combinations should use Name matching.

Thursday, November 8, 12

APACHE
CONFIGURATION

You can find this example Apache VirtualHost definition at the bottom
of httpd.conf:

<VirtualHost ____________>

! ServerName name

! ServerAlias alias

! DocumentRoot path

! CustomLog /path/to/access_log combined

! ErrorLog /path/to/error_log

</VirtualHost>

Thursday, November 8, 12

LAB

1. Configure two websites on your server. “X” represents your station #.

2. wwwX.example.com should be served from “/var/www/html/wwwX”
and should also respond to requests for the short hostname wwwX.

3. vhostX.example.com should be served from “/var/www/html/
vhostX”. vhostX and should also respond to requests for the short
hostname vhostX.

4. Both should be listening on your primary ip address, but
wwwX.example.com should be the default site.

Hint: Read the documentation closely, especially the Virtual Hosts
user’s guide

Thursday, November 8, 12

LAB

1. Create a third vhost that uses port-based hosting to run on
port 81. This site should serve content from “/var/www/
html/port81”. Note there are several steps to get this
working!

Thursday, November 8, 12

LOGS

As discussed previously, Apache has a significant logging
engine built in.

Error Logs provide details about the status of operations,
such as unsuccessful requests, configuration errors and
warnings.

Access Logs provide details on every single request made
to the server, regardless of the status of the response.
Mostly used to track server utilization and feed statistics
tools.

Thursday, November 8, 12

LOGS

In the lab environment, these files are located:

/var/log/httpd/error_log

/var/log/httpd/access_log

Recall that the locations can easily be changed via the
ErrorLog and CustomLog directives, and the directives
can be used repeatedly in different contexts.

Thursday, November 8, 12

LAB

1. Spend a few minutes looking over the existing log files. Try
various valid and invalid requests to your server and observe
the log entries generated.

2. Modify your configuration such that each of your Virtual
Hosts is logging to it’s own access and error logs. Come up
with a logical directory layout or naming scheme for the log
files.

3. Create a new log format for the default server access log and
use it in place of the combined format. Examine the resulting
logs.

Thursday, November 8, 12

URL HANDLING

As discussed in the configuration file walkthrough, Apache
normally maps a url path into a filesystem path starting from
the DocumentRoot, but there are various tools available to
modify this behavior, most importantly:

Aliases

Redirects

Rewrites

http://httpd.apache.org/docs/2.2/urlmapping.html

Thursday, November 8, 12

ALIASES

Aliases are the simplest configuration directive used to add
filesystem locations outside the DocumentRoot to the web
space served by Apache. Consider:

DocumentRoot /var/www/html

A request for:

http://www.site.com/downloads/myfile.zip

results in Apache returning

/var/www/html/downloads/myfile.zip

Thursday, November 8, 12

ALIASES
Now consider the same server:

DocumentRoot /var/www/html

But, throw in an Alias for /downloads:

Alias /downloads /var/downloads

A request for:

http://www.site.com/downloads/myfile.zip

now results in Apache returning

/var/downloads/myfile.zip

Thursday, November 8, 12

LAB

1. Add a folder, /var/www/html/products. Under this
folder, create subfolders with names matching each of
your three vhosts (wwwX, vhostX, port81). In each
of these folders, create a couple of dummy product files.

2. Extend your configuration such that when a user requests
a page using a url beginning with “/products”, they are
sent to the appropriate /var/www/html/products
folder for the site they are browsing.

Thursday, November 8, 12

REDIRECTS
Redirects are a useful way to send a visitor to a different URL, either
temporarily or permanently. Redirects differ from Aliases because the
server does not respond with any content. Instead, the response tells the
user to request a new URL.

For example:

Redirect permanent /old http://www.site.com/new

Forces users requesting anything under /old to be permanently
redirected to /new

www.site.com/old/boxes/one is redirected to:

www.site.com/new/boxes/one

Thursday, November 8, 12

LAB

1. Create a new file, /var/www/html/wwwX/
whizbang-2000.html and briefly describe your
whizbang 2000 invention. Verify the page through firefox.

2. Invent whizbang-3000! Create a file for your amazing
new invention! Create a “See other” redirect from the
2000 page to the 3000 page and see how it works.

Thursday, November 8, 12

REWRITES

URL Rewriting is a very powerful feature of Apache, provided by
the mod_rewrite module.

With rewriting, it is possible to interpret and manipulate an
incoming request URL in almost any manner.

It is also possible to make yourself insane. :)

We will focus on the basics and leave the padded cells for your
own exploration.

Thursday, November 8, 12

REGULAR
EXPRESSIONS

Before any meaningful conversation about mod_rewrite can
occur, another topic must be covered: regular expressions.

Bum bum bummmmmmm!

We will briefly introduce regular expressions. For more
information, consult one of the many tomes that have been
written on the topic.

Thursday, November 8, 12

REGULAR
EXPRESSIONS
Apache recognizes the Perl Compatible Regular Expression
syntax.

A regular expression is a pattern used to describe a particular
input that the user is interested in. For example:

.*firefly.*

When interpreted as a regular expression, will match any input
with the word “firefly” somewhere in it.

What?!?!??

Thursday, November 8, 12

REGULAR
EXPRESSIONS
.*firefly.* What’s going on here, you ask?

The period is a special character in RE syntax. The period will
match any single character.

The asterisk is also a special character. It allows the previous match
to repeat zero or more times.

So, “.*” means to match zero or more characters, any characters!

Put that around the word firefly, which does not contain any special
characters, and you match zero or more characters before and after
the word “firefly”. Or more simply, anything with “firefly” in it!

Thursday, November 8, 12

REGULAR
EXPRESSIONS
A fantastic RE guide, ripped straight from the Apache docs:

http://httpd.apache.org/docs/2.2/rewrite/intro.html

Thursday, November 8, 12

REWRITING

So what, you ask, does regular expressions have to do with URL
rewriting in Apache? Everything!

The main directive used for URL rewriting is:

RewriteRule pattern substitution [flags]

Where pattern is a regular expression to match against the
request URL-path (the part after the host/port),
substitution is where the request should go if the pattern
matches, and flags is an optional list of rewrite engine
modifiers.

Thursday, November 8, 12

REWRITING

As you have probably heard through the grapevine, it’s quite
complex. Regular expressions are bad enough, but then
consider:

The substitution parameter can be:

An absolute filesystem path

A web-path

An absolute URL [possibly] to another site altogether!

Thursday, November 8, 12

EXAMPLES!
OK, enough with the painful syntax.. Let’s see some examples!

RewriteRule ^/current$ /2011

site.com/current internally rewrites to site.com/2011

RewriteRule ^/partners/acme-co$

 http://www.acme-co.com/site.com-referal [R]

This interesting rule rewrites

www.site.com/partners/acme-co to

www.acme-co.com/site.com-referal

Thursday, November 8, 12

HOMEWORK

Time for some homework!

Ok, not really.. But you can see that URL rewriting is extremely
complex, and we’ve only just scratched the surface..

Documentation is your friend, here.. But don’t expect to get it
the first or thirtieth time you’ve read the docs..

Rewrite proficiency is only gained through long, hard experience
and practice. Check out:

http://httpd.apache.org/docs/2.2/rewrite/rewrite_guide.html

Thursday, November 8, 12

LAB

1. Use a RewriteRule to send requests to “vhostX/
whizbang-2000.html” over to the correct wwwX location.

2. Look up the AliasMatch and ScriptAliasMatch
directives. Create a new folder /var/www/html/
produce. Create an AliasMatch configuration which
will send any request for “/apple”, “/banana”, or “/
pear” on the port81 vhost over to the produce folder. Do
this with one AliasMatch.

stationX:81/apple -> /var/www/html/produce

Thursday, November 8, 12

SCRIPTING

Scripting involves making Apache execute a file and return it’s
output, as opposed to simply returning the file itself.

There is an entire framework for facilitating this operation, and
allowing the webserver to communicate basic information to
script through the use of environment variables, and sometimes
input.

This is known as CGI scripting, or Common Gateway Interface
scripting.

Thursday, November 8, 12

BASIC SCRIPTING

Some of the simplest scripting requires only a shell script.
Consider:

#!/bin/bash

echo -e “Content-type: text/html\n”

echo “<h1>Hello world!</h1>”

Thursday, November 8, 12

BASIC SCRIPTING

If we put the appropriate execute permissions on the script, then
we can see it output the expected content at the command line:

chmod +x myscript

./myscript

Content-type: text/html

<h1>Hello world!</h1>

Thursday, November 8, 12

BASIC SCRIPTING

If this file is placed in a location identified to Apache as
supporting executables (CGI scripts), then we have a working
CGI!

Thursday, November 8, 12

LAB

1. Look up the ScriptAlias directive. Use this directive
and your simple shell script to create a simple, dynamic
website. Maybe have it report the current date and time
with the date command.

Thursday, November 8, 12

SSL

SSL, or Secure Sockets Layer, allows for a complete end to end
encryption of the information sent between client and server.

In order to implement SSL, Apache needs:

mod_ssl

A private key and a paired certificate

Various additional configuration directives controlling the
SSL engine and encrypted stream (see ssl.conf)

Thursday, November 8, 12

SSL
Public key cryptography 101:

Server generates a private and public key pair

Server generates a “certificate signing request” which includes the
public key, information about the site, and is signed by the private
key. This CSR is sent to a “certificate authority” for verification.

Once the CA certifies the identity of the site, commonly via phone,
letterhead or snail mail, the CA returns a “certificate”, which is
signed by the private key of the CA.

This creates a ring of trust, since a web user “trusts” the certificate
authorities, and the CA’s have “trusted” a website, you can trust the
website! Amazing, I know!

Thursday, November 8, 12

CERTIFICATES

So continuing, how does this certificate identify and encrypt the
communication?

Client connects to server, requesting secure URL (https://)

Server responds with certificate (includes public key)

Client responds with random encryption key encrypted with
public key, as well as details of web request.

Server decrypts request with private key, and uses the random
encryption key for encrypting the response. It’s magic!

Thursday, November 8, 12

SAY WHAT?!

Ok, so you can see there is some pretty serious complexity going
on here. Take a look at ssl.conf for even more fun, detailing
protocol support, ciphers, caches, pseudo random numbers and
more! Yee-haw!

95% of the time, the main interest for server admins lies in
pointing Apache to the appropriate certificate and key files, via:

SSLCertificateFile

SSLCertificateKeyFile

Thursday, November 8, 12

LAB

1. Complex lab alert. Work together and ask questions!

2. Use the genkey command with the --test flag to create a
test certificate for use with your Apache server. Create the
cert for wwwX.example.com. Use defaults for everything.

3. Once the key and certificate are created, locate them buried
under the /etc/pki folder. Plug them into your
configuration for wwwX and test. Use conf.d/ssl.conf
as a reference. Minimum directives: SSLEngine,
SSLCertificateFile, SSLCertificateKeyFile.

Thursday, November 8, 12

slideshow.end();

Thursday, November 8, 12

keynote:/Users/nisburgh/Alamo/RHCE/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/RHCE/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Linux%20Boot%20Camp/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Linux%20Boot%20Camp/Presentations/Outline.key

