
FTP
Or, how to get a file from point A to point B

Thursday, March 17, 2011



FTP OVERVIEW

FTP is the client/server protocol used to ship files across the 
network.

FTP is an Application Layer protocol, implemented in plain 
text, having only one Transport Layer requirement: a 
reliable and ordered data stream.  TCP is most commonly 
used.

The standard FTP TCP port number is 21, though there are 
some complexities to FTP which call for additional ports.

Thursday, March 17, 2011



PRIMARY FTP RFC’S

The current specification for FTP is RFC 959.

http://tools.ietf.org/html/rfc959

There are additional RFC’s, including security extensions:

http://tools.ietf.org/html/rfc2228

Internationalization:

http://tools.ietf.org/html/rfc2640

Extensions:

http://tools.ietf.org/html/rfc3659

Thursday, March 17, 2011



FTP OVERVIEW

FTP is an interesting protocol, because the communications are 
actually split across two connections.

One connection is known as the command or control 
channel, and is used to run the entire session with a series of 
commands.  This stream utilizes the telnet protocol, and can 
be attached to directly or via an FTP client program.

The other is a transient connection, known as the data 
connection.  This connection is used strictly for sending the 
file data across, and by default, is dynamically created and 
destroyed for each file transferred.

Thursday, March 17, 2011



FTP USAGE

Generally, FTP is used via some form of client, be it a 
command line client or a graphical client.

In this class, the focus will be on the commonly available 
command line client.  This will permit a closer link to the 
protocol, as well as access to special commands and 
debugging options.

The graphical clients are quite straightforward and easily 
learned, particularly after thorough instruction on the 
command line client.

Thursday, March 17, 2011



STARTING THE CLIENT

The first step is starting up the FTP client.  The simplest way to do this 
is to run the ftp command with the ftp server address as the argument:

ftp server1.example.com

This instructs the FTP client program to connect to 
server1.example.com and initiate an FTP session.

Note: most clients will accept URL’s as well:

ftp ftp://server1.example.com/pub/

This example connects and automatically switches to the pub folder

Thursday, March 17, 2011



AUTHENTICATING

After connecting to an FTP server, the next step usually involves 
authenticating with a username and a password.  There are 
generally two choices for authentication:

Anonymous - If enabled, logging in with a user name of 
“anonymous” permits guest access.  Usually read only access.

Local account - Using credentials for an ftp account on the 
system.  Usually allows full read/write access.

Once authenticated, commands can be issued to move around 
the file server, view directory listings, transfer files and more.

Thursday, March 17, 2011



LOCAL/REMOTE

One important thing to keep straight in your head when 
connected to an FTP server is the notion of local and remote 
directories.

You’re basically interacting with two different file systems:

Remote: the filesystem on the FTP server

Local: your filesystem, on the machine running the FTP 
client software.  Downloaded files are saved to this folder.  
Uploaded files must come from this folder.

Thursday, March 17, 2011



LOCAL/REMOTE

Most ftp client commands operate on the remote filesystem, 
but a few are important to the local filesystem:

lcd: Local Change Directory.  This command changes the 
local current directory.

lpwd: Local Print Working Directory.  Also, “lcd .” will 
usually show the local current directory.

Thursday, March 17, 2011



NAVIGATION

The basic idea with FTP is to use the cd command to move 
around the remote filesystem, and when you wish to transfer 
a file, you use:

get <remotename> [localname]: Download a 
remote file to your local filesystem, optionally renaming 
in the process.

put <localname> [remotename]: Upload a file from 
your local machine to the fileserver, optionally renaming.

Thursday, March 17, 2011



DISCONNECTING

When all transfers are complete, disconnecting from the 
server is simple:

quit: Terminate FTP session and exit client

bye: Same as quit

close: Terminate FTP session but remain in client

disconnect: Same as close

Thursday, March 17, 2011



1) Connect to ftp.gnu.org.  Locate and download wget-
latest.tar.gz.  Try uploading a file.  Does it work?  
Why or why not, do you suppose?

2) Connect to server1.example.com as stationX, where X 
is your station number ( Type hostname to see your 
station number ).  Try uploading a file.

3) Browse through RFC 959.  Anything interesting?

LAB 1

Thursday, March 17, 2011



FTP REPLIES

FTP replies consist of a three digit number, possibly followed 
by a brief text message, normally all contained on one line, 
though multiple lines are possible depending on the server 
software and the command sent.  Examples:

220 GNU FTP server ready.

215 UNIX Type: L8

257 "/"

200 Switching to Binary mode.

Thursday, March 17, 2011



FTP REPLIES

Each digit of the code has special meaning

The first digit indicates the overall response: good, bad or 
incomplete.

The second digit indicates the category of response, such as 
syntactical, connection, information, etc.

The third digit provides additional detail about the category 
referred to in the second digit.

Thursday, March 17, 2011



FIRST DIGIT

1__: Positive preliminary - action beginning

2__: Positive completion

3__: Positive intermediate, need more information

4__: Temporary negative completion

5__: Permanent negative completion

Thursday, March 17, 2011



SECOND DIGIT

_0_: Syntax errors

_1_: Informational responses - status, help

_2_: Connection responses - control and data

_3_: Authentication and accounting

_4_: Unspecified

_5_: Filesystem responses

Thursday, March 17, 2011



THIRD DIGIT

The third digit provides additional meaning to the category given 
by the second digit.  Accepted values given in RFC.  Examples:

500 - Syntax error, unrecognized command

501 - Syntax error, invalid arguments

502 - Command not implemented

503 - Bad command sequence

504 - Command parameter not implemented

Thursday, March 17, 2011



TEXTUAL RESPONSE

The textual component of the response is generally meant for human 
consumption, though there are a handful of responses which should 
be parsed by the client.

For extra credit, note that if the reply text is longer than one line, 
every response except the last will start with the same code, followed 
immediately by a hyphen.  The last line will not contain the hyphen:

250-First line

250-Second line

250 Last line

Thursday, March 17, 2011



RESPONSES

The official list of response codes and suggested texts is 
available in the RFC: ➥RFC 959 §4.2.2

Additional response codes are possible for future use, and 
research into the server software will be necessary to 
understand their meaning.

Thursday, March 17, 2011

http://tools.ietf.org/html/rfc0959
http://tools.ietf.org/html/rfc0959


CLIENT DEBUGGING

Turning on debug mode in the client can be extremely useful 
to see the sequence of commands and replies.

ftp -d ...: Start up ftp client in debug mode

If the ftp client is already running, type “debug” to turn 
on debugging.

All lines starting with “-->” are commands sent to the server.

Thursday, March 17, 2011



1) For the following exercises, turn on debugging and 
analyze the control communications.

2) Connect to ftp.gnu.org.  Locate and download wget-
latest.tar.gz again.

3) Browse through RFC 959.  Focus in on sections 2.3, 3.2, 
3.3 and 4.2.

LAB 2

Thursday, March 17, 2011



FTP CAVEAT #1

FTP has a couple of caveats, and the first one is this:

There are two ( technically four, but the other two aren’t 
commonly used anymore ) ways of encoding the data for 
transfer:

Binary - send data over precisely as stored on sending 
machine - no rewriting.

ASCII - convert data from local format to standardized 
NVT-ASCII format ( see telnet protocol ), transmit, and 
at the receiving end, convert back to a local storage form. 

Thursday, March 17, 2011



FTP CAVEAT #2

The second FTP caveat:

How data connections are established.  This single issue is 
the number one cause of FTP failures.

Active - Upon initiating a data transfer, the client 
provides a data port to the server, and the server 
connects to the client.

Passive - Upon data transfer, the server provides a port 
to the client, and the client connects to that port on the 
server.

Thursday, March 17, 2011



ACTIVE/PASSIVE

The active/passive modes in FTP are an artifact of an out of 
band protocol ( meaning data is transferred separately from 
commands, unlike a protocol like SMTP, which is in-band ).

Active mode is commonly the default, and works fine in 
many situations.  So long as the server can connect back to 
the client on the given port, all is well.

What about firewalls, though?

Thursday, March 17, 2011



FIREWALLS

Firewalls are exactly the issue.  Generally, firewalls are locked 
down to disallow inbound connections except to specific ports 
on a machine.  And the randomly generated ports for active 
FTP present a serious headache for firewall administrators.

Passive mode addresses this issue, because in passive mode, 
connections are always client to server, and outbound 
connections on a client usually aren’t blocked by a firewall.

Of course, this means the firewall on the ftp server needs to be 
opened up for any of those data ports.  Most FTP servers 
provide configuration directives to control data port ranges.

Thursday, March 17, 2011



FIXUP

You should be aware that Cisco has a technology known as 
Fixup.  Fixup is a feature that can be enabled on Cisco devices 
on a per protocol basis to analyze the protocol traffic and 
perform automatic self reconfiguration.

Huh?

Basically, if configured, a Cisco firewall can automagically open 
inbound ports based on passive mode FTP session commands!  
If it knows an internal machine is expecting a data connection 
from an external machine, the firewall will allow it!

Thursday, March 17, 2011



PERFORMANCE

Since we’re on the topic, it should be noted that there is a 
certain cost associated with transferring a file with FTP.

A control session must be established, then a data 
connection must be negotiated, connected, used and torn 
down again.  For each file!

If there are lots and lots of files to be transferred, it’s often 
more efficient to zip them all up and transfer one large file, 
rather than dealing with lots and lots of separately 
negotiated, opened and closed data connections.

Thursday, March 17, 2011



SWITCHING ACTIVE/
PASSIVE

Switching between active and passive mode is simple:

passive: toggle between passive and active mode.

status: see all current session settings.

Thursday, March 17, 2011



ACTIVE/PASSIVE

When in active mode, the client will issue a PORT command 
to the server, supplying the necessary connection parameters 
for the server to connect back to the client.

When in passive mode, the client will issue a PASV command, 
and the server will reply with the connection parameters for 
the client to use to connect back to the server.  Then the client 
can issue a data transfer request and the server will prepare a 
connection on the PASV supplied parameters.

Let’s look at these various communications...

Thursday, March 17, 2011



PASSIVE RESPONSES

When a client is in passive mode, responses often look like:

227 Entering Passive Mode (140,186,70,20,142,131)

229 Entering Extended Passive Mode (|||32388|)

The numbers in the parenthesis are what the client uses for the 
data connection parameters.

Thursday, March 17, 2011



PASSIVE

227 Entering Passive Mode (140,186,70,20,142,131)

The first four numbers in the parenthesis tell the client each octet 
of the IPv4 address, in this case 140.186.70.20.

The remaining two numbers are the high and low bytes of the 
port number.  To get the port number:

high * 256 + low

142 * 256 + 131 = port 36483

Thursday, March 17, 2011



EXTENDED PASSIVE

229 Entering Extended Passive Mode (|||32388|)

Extended passive mode is defined in RFC 2428.  This 
extension was added mainly to support IPv6.

The above response tells the client to connect to the server 
with the same network protocol and address on port 32388.

Thursday, March 17, 2011



ACTIVE COMMANDS

Active mode requires the client to tell the server what 
connection parameters to use for the data connection.

You normally need to be in debug mode to see these 
commands:

PORT 192,168,1,10,181,163

EPRT |1|192.168.1.133|63138|

Thursday, March 17, 2011



PORT

Using the PORT command tells the server the parameters for 
connecting back to the client:

PORT 192,168,1,10,181,163

Similar format to the passive response: each octet from the 
IPv4 address, followed by high and low order bytes of port 
number.

Thursday, March 17, 2011



EPRT

EPRT is defined in RFC 2428 as well, again for supporting 
IPv6:

EPRT |1|192.168.1.133|63138|

This command tells the server to use IPv4 ( the first 1.  A 2 
would indicate IPv6 ), connecting to 192.168.1.133 on port 
63138.

Thursday, March 17, 2011



1) Using server1.example.com and your stationX login, try 
uploading and downloading various files in both active 
and passive modes.  Use debug mode to follow the FTP 
dialogue.

2) Try transferring a text file between systems and note the 
difference between binary and ascii mode.  Generally, unix 
to windows and vice versa illustrates the behavior the 
best, due to line ending encoding.

LAB 3

Thursday, March 17, 2011



ADDITIONAL 
COMMANDS

Some additional and useful FTP commands:

user - Change or specify a username

hash - Toggle printing of hash progress meter

mget - Download multiple files at once.  Supports wildcards.

mput - Upload multiple files at once.  Supports wildcards.

prompt - Toggle prompting for each file in multiple 
operations.

Thursday, March 17, 2011



SERVER LOGS

There are many different FTP server programs out there, 
and there’s no chance to cover all of them.

Most provide basic logging options, and some include the 
ability to log full command conversations, which can 
occasionally be useful for debugging.

Be sure to understand the capabilities of the FTP server 
being debugged, as the logs could be invaluable.

Thursday, March 17, 2011



FTP SECURITY

The notion of “security” when it comes to basic FTP is a joke.

There is no inherent security in the FTP protocol 
whatsoever.

Nothing is encrypted and there are no strong identification 
practices

There are, however, a couple of related protocols that do 
provide various additional securities...

Thursday, March 17, 2011



FTPS

FTPS is a fairly rarely used extension to FTP that allows for 
negotiating an encrypted FTP session, via several newly defined 
commands.

RFC 2228 officially defines the security extensions for FTP.

Using FTPS encrypts the command and optionally the data 
channels with SSL or TLS.

Not many servers support these features, as most public FTP 
servers are simply download repositories of public information.

Consider: fixup + encrypted command channel?  Will it work?

Thursday, March 17, 2011



SFTP

SFTP isn’t actually FTP at all.  :)

SFTP is an FTP-like interface which is provided by the 
OpenSSH server.

It can be accessed with the OpenSSH sftp command.

Commands and behavior are very similar to original FTP, but 
that’s where the similarities end.

SFTP runs on top of the completely encrypted SSH protocol 
on port 22.  Only one port to open on the firewall!

Thursday, March 17, 2011



1) Use sftp to transfer a file to server1.example.com.  Note 
any differences between the sftp and ftp clients.

2) Browse through RFC 2228.

3) Turn on hashmark printing.  Upload all files from your 
home directory to server1.example.com.

4) Use a wildcard pattern to download 3-5 files at once from 
ftp.gnu.org.

LAB 4

Thursday, March 17, 2011



slideshow.end();

Thursday, March 17, 2011

keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key
keynote:/Users/nisburgh/Alamo/Intro%20to%20Linux/Presentations/Outline.key

