Bash Scripting
O

MAKING THE ADMIN’S LIFE
THAT MUCH EASIER

1 - Introduction

GVO tes:

1 - Introduction

About the Instructor

O

e Nathan Isburgh

e instructor@edgecloud.com
e Unix user |5+ years, teaching it 10+ years

e Unix Administration and Software Development
Consultant

©RHCE on RHEL 5 & 6
¢ All around uber-geek
e Goofy, forgetful (remember that)

/]/VOTGS N \\

1 - Introduction

About the Course

O

e | day, lecture/lab format
e Hours: 8:30 - 5:00
e Lunch: 11:45 - 1:00
¢ Breaks about every hour
e Throw something soft at me if | get too long in the tooth
¢ Telephone policy
e Take it outside, please
¢ Restrooms
e Across from central stairs

e Refreshments

e Downstairs in break room, mini-fridge in classroom, machines by
stairs

1 - Introduction 3

/]/VOTGS N

~

1 - Introduction

About the Students

O

¢ Name!?

e Time served, | mean employed, at Rackspace?

¢ Department!?

e General Unix skill level? What about Linux?

e And familiarity with Bash?

¢How do you use Linux in your position?

¢ What are you hoping to take away from this class?

/]/VOTGS N \\

1 - Introduction

Expectations of Students

O

e Strong foundation in basic Linux use and administration
e Preferably through RHCSA

e Strong understanding of working in the shell
e Ask Questions!
e Complete the labs

¢ Email if you're going to be late/miss class
e Have fun

¢ Learn something

/]/VOTGS N \\

1 - Introduction

Intentionally Left Blank

GVO tes: \

2 - Scripting Basic Concepts

Scripting Basic Concepts

O

G\TO tes: \

2 - Scripting Basic Concepts

Overview

O

¢ There are several basic concepts about the shell and
scripting which must be understood before tackling more
complex problems

e Basic shell syntax

e Shebang syntax

e Quoting

¢ Exit status and subprocesses
e Variables

e Commenting

/]/VOTGS N \\

2 - Scripting Basic Concepts

Shell Syntax

O

e Shell scripting is simply placing a sequence of shell
commands into a file, for future “playback”

= Obviously there are plenty of details, which is what we will be
exploring in this course

e At the end, though, it all boils down to shell commands

e Therefore, it follows that you must already have a strong
foundation in basic shell syntax
e Quoting
s Environment variables

e Commands

/]/VOTGS N \\
_ J

2 - Scripting Basic Concepts

Scripting 107

O

e Simple shell scripts simply run command after command,
as if the user typed them in at the command line
e More complex shell scripts actually make decisions about what
commands need to be run,and might even repeat certain sequences
to accomplish a given task
e Scripts start executing at the top and stop when there are
no more commands to execute or when exit is called

e Or due to a syntax error!

2 - Scripting Basic Concepts 10

/]/\fotes:

10

2 - Scripting Basic Concepts

Example

O

¢ Here is a very simple shell script to consider

Eecho “Hello, what is your name?”
i read NAME
i echo “Hello $NAME, it’s nice to meet you!”

i echo -n “The current time is: “
]

i date

!

e Using the echo command, this script asks a question.

¢ The read command accepts input from the user and
stores it in the environment variable NAME

¢ The script finishes up with a couple more echo
statements, greeting the user and announcing today’s date

2 - Scripting Basic Concepts "

/]/VOTGS N \\

11

2 - Scripting Basic Concepts

Running The Example

O

¢ If we put the example in a file called myscript, we can
execute the script as:
e bash myscript

e Which instructs your interactive shell to start a new shell,
bash, to open myscript and execute each line as if
the user had typed it in manually

e Running in this way, bash operates as an interpreter

= Reading each line of the file, bash would interpret the words and
perform the given action

e There are many interpreted languages available for
scripting, including all of the shells, python, ruby, perl, etc.

2 - Scripting Basic Concepts 12

(;Votes: \\

12

2 - Scripting Basic Concepts

Interpreters

O

e Following this idea, to run a script, you simply feed the file
to the appropriate interpreter
e bash mybashscript

e perl myperlscript

e This works fine, but sometimes it’s more user-friendly to
allow the script to be run directly, removing the need for
an external call to the interpreter...

s ./mybashscript
e myperlscript

e How is this done?

2 - Scripting Basic Concepts 13

/]/VOTGS N \\

13

2 - Scripting Basic Concepts

Shebang!

O

e This is accomplished with the shebang (#!), also known
as a hash bang, pound bang or hashpling.

¢ The basic idea is very simple

© When the kernel is asked to execute a file, the content
must either be machine code (compiled software), or a
file that starts with the shebang sequence

e If the first two characters of the file are a hash mark and
an exclamation mark (shebang!), the rest of the line is
expected to be a pathname for an interpreter, which will
then be invoked to “run” the file as a script
e Connecting the script to stdin of the interpreter process

2 - Scripting Basic Concepts

[1,\70 tes:

14

2 - Scripting Basic Concepts

Back to the Example

O

©So, add an appropriate shebang to the example:

{ #!/bin/bash

Eecho “Hello, what is your name?”

Eread NAME

Eecho “Hello $NAME, it’s nice to meet you!”
Eecho -n “The current time is: “

idate

e Then add execute perms so the script can be run directly:

i [root@Rlocalhost ~]# chmod a+x myscript

E [root@localhost ~]# ./myscript

EHello, what is your name?

ELinus

EHello Linus, it’s nice to meet you!

iThe current time is: Sun Jul 21 09:3%9:33 CDT 2013
{ [root@localhost ~]#

2 - Scripting Basic Concepts

G\TO tes:

15

2 - Scripting Basic Concepts

Detalls to Note

O

e Note the use of quoting in the example
= Remember that everything in a shell script must follow shell syntax!
e If something would need to be quoted on the command
line (due to whitespace or metacharacters), it will also
need to be quoted in the shell script

¢ In addition to single and double quotes, remember your
escape character:\ (the backslash)

¢ Do you know the difference between the quoting mechanisms?

2 - Scripting Basic Concepts

(]/\fotes:

16

2 - Scripting Basic Concepts

Exit Status

O

¢ Another important detail to internalize when shell
scripting is the importance of exit codes (or statuses)

e Every single time a process is finished executing, it notifies
the kernel via an exit system call

¢ There is a required parameter to the exit system call,
known as the exit status

e The exit status is a number, and there are only two values
meaningful to the kernel and shells:
s Zero: Zero means a successful application exit

e Non-Zero: Any non zero exit status implies a failure of some sort

2 - Scripting Basic Concepts 17

(1/\70 tes: \\

17

2 - Scripting Basic Concepts

Exit Status and Scripting

O

¢ The reason that the exit status is so important to shell
scripting is because all of the shell features used in scripting
are based on exit status
e Conditionals
e Looping
e Intelligent command separators

¢ Note that the actual non-zero values a program might
use, such as 14, -8, 2, etc, do not have standard meanings

e The documentation for an application might specify the meaning of
particular exit codes, which can then be checked in a script through
the $? special environment variable

2 - Scripting Basic Concepts

(]/\fotes:

18

2 - Scripting Basic Concepts

Variables

O

¢ Variables in shell scripting are nothing more than standard
environment variables

e This is convenient; the known rules and capabilities apply
e NAME=value
e NAME="“quoted value”
e 1s SNAME
s echo Hello ${NAME:-Sir/Madam},may I help you\?

e The set and env commands are useful
e See bash manpage under heading “Parameter Expansion”

2 - Scripting Basic Concepts

/]/VOTGS N

19

2 - Scripting Basic Concepts

Commenting

O

e Commenting falls under the larger topic of coding style,
which could be a class unto itself

¢ Note that style is an individual attribute, developed over time as a
software developer

e It is also often lightly or strictly specified by organization

e To simplify this discussion, let us recall the Golden Rules
of Commenting...

2 - Scripting Basic Concepts 20

/]/VOTGS N

20

2 - Scripting Basic Concepts

The Golden Rules of Commenting

O

¢ Always comment code which is not obvious to a non-
author reader
e You should not comment “i=1+1"

s You should comment“rsync -vazpc SWHAT SWHERE”

¢ Always comment functions: their purpose, use, arguments,
expectations and results

e Always comment the overall program’s purpose and
behavior at the top of the file
¢ Include dates and authors (maybe an abbreviated revision history?)

¢ Always comment when not sure if you should
e They don’t cost anything!

2 - Scripting Basic Concepts

21

(]/\fotes:

21

2 - Scripting Basic Concepts

Lab

O

e Write a basic “Hello world” shell script

e The script should greet the user by name, then welcome him to the

world of scripting. Consider commands or environment variables
which might obtain the user’s login name.

e Match the following output format, substituting the underlined values
appropriately:

e Hello nisburgh. Welcome to the world of scripting.

e The current date is Monday, July 22, 2013.
¢ Follow all of the guidelines discussed

e Make it a standalone executable using the shebang syntax
e Comment appropriately

e Read documentation for assistance

2 - Scripting Basic Concepts

22

(;QOtes: <“\

22

3 - Conditionals

Conditionals

O

G\TO tes: \

23

3 - Conditionals

To Execute or Not To Execute

O

¢ More advanced problems require the script to make
decisions. There are two basic ways to make decisions
with shell scripts:

e 1 f statements
e The most basic and powerful conditional
e “If some condition is true, then do these things”

e case statements

e A streamlined version of an if statement, mainly used to improve
readability and maintenance of code

e “Taking a given input and several possible values I'm interested in,
which one matches? Then do these things based on that match”

3 - Conditionals

24

/]/\fotes:

24

3 - Conditionals

The test Command

O

e Before we continue talking about decisions, we need to
talk about the test command. This command actually
performs the comparisons necessary to ask many
common questions, such as:

e “stringl” = “string2” Is string | identical to string2
e SVAR -1t 45 Is $ VAR numerically less than 45
e —e path Does path exists
e The result of the test is in the exit status
e True Exit O
e False Exit |

e See the man page on test for additional details and
more flags; there are many tests it can perform

3 - Conditionals 25

(]/\fotes: \\

25

3 - Conditionals

The If Statement

O

¢ Basic syntax:

if list
then list
[elif list
then list]

[else list]
fi

3 - Conditionals 26

/],VO tes:

26

3 - Conditionals

Example

O

#!/bin/bash
echo “Hello, what is your name?”
read NAME
if [“SNAME” = “Linus”]
then
echo “Greetings, Creator!”
elif [“SNAME” = “Bill”]
then
echo “Take your M$ elsewhere!”
exit
else
echo “Hello $NAME, it’s nice to meet you!”
fi
echo -n “The current time is: ™
date

e This script bases it’s response on the name given

3 - Conditionals

(3VOTBS:

27

3 - Conditionals

The case Statement

O

¢ Basic syntax

case word in
pattern) list;;

esacC

3 - Conditionals 28

G\TO tes:

28

3 - Conditionals

Example

O

#!/bin/bash
echo “Hello, what is your name?”
read NAME
case SNAME in
“Linus”)
echo “Greetings, Creator!”

\\Billli)
echo “Take your M$ elsewhere!”
exit
*)
echo “Hello $NAME, it’s nice to meet you!”
esac
echo -n “The current time is:
date

AN

e This script maintains identical behavior, but uses a case statement

3 - Conditionals

(EVOtes:

29

3 - Conditionals

Lab

O

© Write a shell script which uses an if statement to print a
special message on the first and fifteenth of the month:
e If it is the first or fifteenth of the month, the script should print:
e YAY! Payday!
e Otherwise, if should print:
e Boo.. Not yet payday..
e To test, simply change the date of your machine
e Check the first, second, tenth, eleventh, fifteenth, and twenty first

¢ Remember to comment appropriately

3 - Conditionals

30

/]/VOTGS N

30

4 - Looping

Looping

O

4 - Looping

G\TO tes:

31

4 - Looping

Looping

O

e Sometimes a certain sequence of commands need to be
run repeatedly, either for a set number of times or while
some condition is true. This is accomplished with:

ewhile loops
e Most common and powerful loop form
e “Check some condition and if true, run these commands. Then
check again and if still true, run these commands again. Repeat until
the condition is no longer true.”
e for loops
e Simple method for looping a given number of times or over a list
¢ “Do this X times.”
e “Do this for each item in a list”

4 - Looping 32

(]/\fotes: \\

32

4 - Looping

The while Loop

O

¢The while loop is the most common, but be aware it has
a brother; the until loop

¢ The until loop is identical in operation, but the conditional
requirements are reversed; execute while the conditional is false

e Basic while/until syntax:

while 1list;

do list;
done
4 - Looping 33
/]/VO tes: \\
o _/

33

4 - Looping

Example

O

#!/bin/bash
echo “Hello, what is your name?”

read NAME

while [“SNAME” != “Linus”]

do
echo “I don’t know that person, what is your name?”
read NAME

done

echo “Greetings, Creator!”
echo -n “The current time is:
date

AN

e This script will loop until the given name is “Linus”

4 - Looping

34

(3VOTBS:

34

4 - Looping

The for Loop

O

e There are two major forms of the for loop

e Basic syntax of the first:

for ((exprl ; expr2 ; expr3))
do list;
done

4 - Looping 35

/],\TOTGS N ‘\

35

4 - Looping

Example

#!/bin/bash
echo “Hello, what is your name?”
read NAME
for ((I=0 ; I<3 ; I++))
do

echo “Hello S$SNAME!!”
done
echo -n “The current time is: “
date

e This goofy script repeats your name 3 times before giving
you the date and time

4 - Looping

36

f?vbtes:

36

4 - Looping

The for Loop

O

e The second form iterates over items in a list
¢ Basic syntax:

for name in word ...;
do list;
done

4 - Looping

37

(],\70 tes:

37

4 - Looping

Example

O

#!/bin/bash
echo “Hello, what is your name?”
read NAME
for TIME in Three Two One
do
echo “$TIME”
sleep 1
done
echo “Hello S$SNAME!!”
echo -n “The current time is:
date

AN

e This goofy script counts down “3...2...1...” then yells the
given name, followed by the date and time
e Note that you can execute a subcommand with the back
quotes, and each line will become a list item:
for item in “1ls /tmp"

4 - Looping

38

f?bbtes:

38

4 - Looping

Lab

O

¢ Write a script which uses loops and conditionals to
announce every minute as it strikes
e Itis [:01pm!
e Itis 1:02pm!
e Etc...

e Think of efficient ways to perform this operation, such as
sleep statements. Do not “spin.” Spinning is when a
program runs as fast as it can in a loop waiting on some
event to occur, rather than using more intelligent
behavior such as alarms, blocks and timers to conserve
CPU resources

4 - Looping 39

(;Votes: \\

39

4 - Looping

4 - Looping

Intentionally Left Blank

40

GVO tes:

40

5 - Special Variables

Special Variables

O

G\TO tes:

41

5 - Special Variables

Special Variables

O

¢ The shell has many special variables to contain
information
e Positional parameters (arguments)
e Exit status of previous command
e Bash information

e There are also several ways of getting at the values of
variables, known as parameter expansion

5 - Special Variables

42

/]/VOTGS N

42

5 - Special Variables

Positional Parameters

O

e The positional parameters are the arguments to the script
or a function

e They are assigned numerically, left to right
e script argA argB argC
e $0 is the script name
e $1isargA
e $2isargB
e $3isargC
¢ Also, there are a couple of related special variables
e S# is the total number of arguments (not including $0)
e $@ expands to a space separated list of all arguments

5 - Special Variables 43

/]/VOTGS N \\

43

5 - Special Variables

Exit Status

O

e The exit status of the previously executed command can
be obtained through the $? variable

eIt is important to consider the meaning of this variable

¢ Every time you execute a command, it changes

e If you echo $7,by the following line it’s different already (the exit
code of echo)

¢ For this reason, you will often see scripters storing the
value in another variable for future examination:
e command with Iimportant exit status
e ESTAT=$7?
e i1f [SESTAT -eq 5]

(]/Votes: \\
S y

44

5 - Special Variables

Bash Information

O

< HOSTNAME

= PWD

< UID

e BASHPID

= BASH_VERSION

Variables”

5 - Special Variables

e There are dozens of informational variables which are
maintained by bash, including some more useful ones:

e For a complete list of variables, see the manpage under
various headings, including “Special Parameters” and “Shell

45

/]/VOTGS N

45

5 - Special Variables

Expanding Variables

O

e Variables have several methods of expansion to values
¢ SNAME
e ${NAME} to be more precise, or embed in another term
e ${NAME: -word} will expand to word if NAME is not set or null

e ${NAME:=word} will expand to and assigh NAME to word if
NAME is not already set or null

e ${NAME: ?word} will fail with an error message of word if NAME
is not set or null

e S{NAME:offset:length} fetches length characters from
NAME starting at offset

e S{#NAME} returns character length for value of NAME

e See manpage under “Parameter Expansion” for complete
details and additional options

5 - Special Variables

46

(]/\fotes:

46

5 - Special Variables

Lab

O

e Modify the lab from the Loops module to accept two
optional parameters

e The number of total announcements to make before exiting
(‘originally it would run forever, which should be the default)

e A yes or a no, which indicates whether or not to also print the date
with the announcement. Default of yes
¢ Example:
e myscript 5 yes
e Would report 5 times and exit, and each report line would say
something along the lines of:
eIt is 4:32pm, July 9, 2013!

5 - Special Variables

47

/]/VOTGS N

47

5 - Special Variables

5 - Special Variables

Intentionally Left Blank

48

GVO tes:

48

6 - Functions

Functions

O

G\TO tes:

49

6 - Functions

Overview

O

e Functions are an important component of code
organization and reuse

e A function allows you to group a series of statements
under a name, then call the function at any time to
execute the collected statements

¢ You can also pass arguments to the function for it to
operate on

e Further, the function can return a value to the caller,
indicating status or results

6 - Functions

50

(]/\fotes:

50

6 - Functions

Example

O

#!/bin/bash

sayhello () {
echo Hello $1
return 5

}

sayhello Bob

e This script defines a function called sayhello, which it
then uses to say hello to Bob

e Note how arguments are passed (through standard
positional parameters)

¢ Note how a return value is generated
e Default is the exit status of last command executed by function

6 - Functions

51

f;bOtes:

51

6 - Functions

Using Functions

O

e Functions are often collected in a file, and used by multiple
scripts as a library

e To use a library like this, you need to source the file
source path-to-library
path-to-library
¢ For an example, see the startup scripts in the init.d
folder

e They all use the /etc/init.d/functions library for
common operations like starting a service

6 - Functions 52

/]/VOTGS N \\

52

6 - Functions

Lab

O

e Modify the lab from the Special Variables module such that
the reporting functionality is wrapped in one or more
functions

¢ Place the function(s) in a library

e Get creative and add a few more functions to encompass
some silly behaviors like using names, printing banners or
doing file operations with redirection

e Write a new script which uses the library to offer
behaviors to the user through a simple menu system

6 - Functions 53

(;Votes: \\

53

